2016 AMC 8 Problem 25 Geometry

Understand the problem

A semicircle is inscribed in an isosceles triangle with base $16$ and height $15$ so that the diameter of the semicircle is contained in the base of the triangle as shown. What is the radius of the semicircle? [asy]draw((0,0)--(8,15)--(16,0)--(0,0)); draw(arc((8,0),7.0588,0,180));[/asy] $\textbf{(A) }4 \sqrt{3}\qquad\textbf{(B) } \dfrac{120}{17}\qquad\textbf{(C) }10\qquad\textbf{(D) }\dfrac{17\sqrt{2}}{2}\qquad \textbf{(E)} \dfrac{17\sqrt{3}}{2}$
Source of the problem
2016 AMC (American Mathematical Contests) 8  problem 25
Topic
Number Theory
Difficulty Level
Easy

Start with hints

Do you really need a hint? Try it first!

Hint figure :   [asy] pair A, B, C, D, E; A=(0,0); B=(16,0); C=(8,15); D=B/2; E=(64/17*8/17, 64/17*15/17); draw(A--B--C--cycle); draw(C--D); draw(D--E); draw(arc(D,120/17,0,180)); draw(rightanglemark(B,D,C,25)); draw(rightanglemark(A,E,D,25)); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,N); label("$D$",D,S); label("$E$",E,NW);[/asy]
  [asy] pair A, B, C, D, E; A=(0,0); B=(16,0); C=(8,15); D=B/2; E=(64/17*8/17, 64/17*15/17); draw(A--B--C--cycle); draw(C--D); draw(D--E); draw(arc(D,120/17,0,180)); draw(rightanglemark(B,D,C,25)); draw(rightanglemark(A,E,D,25)); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,N); label("$D$",D,S); label("$E$",E,NW);[/asy]  Verify \( AD = 8  \) and recall the concepts of Similar Triangles. Then proceed .    
    [asy] pair A, B, C, D, E; A=(0,0); B=(16,0); C=(8,15); D=B/2; E=(64/17*8/17, 64/17*15/17); draw(A--B--C--cycle); draw(C--D); draw(D--E); draw(arc(D,120/17,0,180)); draw(rightanglemark(B,D,C,25)); draw(rightanglemark(A,E,D,25)); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,N); label("$D$",D,S); label("$E$",E,NW);[/asy]   Verify \( \triangle AED \sim \triangle ACD \) . And proceed to find the radius of the semicircle i.e. DE . [NOTE : As DE is the radius and AC be the tangent so \( DE \perp AC \)  .]
We have \( \triangle AED \sim \triangle ACD \) . This similarity means that we can create a proportion: \( \frac {AD}{AC} = \frac {DE}{CD} \) . We plug in \( AD = 8 , AC = 17 \ and \ CD = 15 \) . So \( DE = \frac {8}{17}  \times 15   = \frac {120}{17} \)  .

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Angles in a circle | PRMO-2018 | Problem 80

Try this beautiful problem from PRMO, 2018 based on Angles in a circle. You may use sequential hints to solve the problem.

Circles and Triangles | AIME I, 2012 | Question 13

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2012 based on Circles and triangles.

Complex Numbers and Triangles | AIME I, 2012 | Question 14

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2012 based on Complex Numbers and Triangles.

Triangles and Internal bisectors | PRMO 2019 | Question 10

Try this beautiful problem from the Pre-RMO, 2019 based on Triangles and Internal bisectors. You may use sequential hints to solve the problem.

Problem on Semicircle | AMC 8, 2013 | Problem 20

Try this beautiful problem from AMC-8, 2013, (Problem-20) based on area of semi circle.You may use sequential hints to solve the problem.

Radius of semicircle | AMC-8, 2013 | Problem 23

Try this beautiful problem from Geometry: Radius of semicircle from AMC-8, 2013, Problem-23. You may use sequential hints to solve the problem.

Linear Equations | AMC 8, 2007 | Problem 20

Try this beautiful problem from Algebra based on Linear equations from AMC-8, 2007. You may use sequential hints to solve the problem.

Digit Problem from SMO, 2012 | Problem 14

Try this beautiful problem from Singapore Mathematics Olympiad, SMO, 2012 based on digit. You may use sequential hints to solve the problem.

Perfect cubes | Algebra | AMC 8, 2018 | Problem 25

Try this beautiful problem from Algebra based on Perfect cubes from AMC-8, 2018, Problem -25. You may use sequential hints to solve the problem.

Problem based on Integer | PRMO-2018 | Problem 4

Try this beautiful problem from Algebra based on integer from PRMO 8, 2018. You may use sequential hints to solve the problem.