 ## Competency in Focus: Complex Number

This problem from B.Stat 2005 Problem 4 – Objective Admission Test (Hons.)  is based on Demoivre’s Theorem.

## First look at the knowledge graph:- ## Next understand the problem

The value of $\left\{\frac{1}{2}(-1+\sqrt{3} i)\right\}^{15}+\left\{\frac{1}{2}(-1-\sqrt{3} i)\right\}^{15}$ is
$\begin{array}{ll}{\text { (A) }-1 } & {\text { (B) } 0 \text { (C) } \frac{1}{2^{14}} \quad(\mathrm {D} ) 2}\end{array}$
##### Source of the problem

B.Stat  2005 Problem 4 – Objective Admission Test (Hons.)

### Complex Number

4/10
##### Suggested Book
Challenges and Thrills in Pre College Mathematics Excursion Of Mathematics

Do you really need a hint? Try it first!
First of all know the Theorem that we are going to use. its called De-Moivres Theorem. See below $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$
for all integers $n$.
I hope you must have solved it, becouse it just involves basic calculation and trignometric solutions. If not then see Next hint.
$\left\{\frac{1}{2}(-1+\sqrt{3} i)\right\}^{15}+\left\{\frac{1}{2}(-1-\sqrt{3} i)\right\}^{15}$
$=\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) \quad+\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)$
$=\cos \frac{2 \times 15 \times \pi}{3}+i \sin \frac{2 \times 15 \times \pi}{3}+\cos \frac{4 \times 15 \times \pi}{3}+i \sin \frac{4 \times 15 \times \pi}{3}$
$=\cos 10 \pi+i \sin 10 \pi+\cos 20 \pi+i \sin 20 \pi$
$=2$

## I.S.I. & C.M.I. Program

Indian Statistical Institute and Chennai Mathematical Institute offer challenging bachelor’s program for gifted students. These courses are: B.Stat and B.Math program in I.S.I., B.Sc. Math in C.M.I.
The entrances to these programs are far more challenging than usual engineering entrances. Cheenta offers an intense, problem-driven program for these two entrances. ## ISI MStat Entrance 2020 Problems and Solutions

Problems and Solutions of ISI MStat Entrance 2020 of Indian Statistical Institute.

## ISI Entrance 2020 Problems and Solutions – B.Stat & B.Math

Problems and Solutions of ISI BStat and BMath Entrance 2020 of Indian Statistical Institute. ## Testing of Hypothesis | ISI MStat 2016 PSB Problem 9

This is a problem from the ISI MStat Entrance Examination,2016 making us realize the beautiful connection between exponential and geometric distribution and a smooth application of Central Limit Theorem. ## ISI MStat PSB 2006 Problem 8 | Bernoullian Beauty

This is a very simple and regular sample problem from ISI MStat PSB 2009 Problem 8. It It is based on testing the nature of the mean of Exponential distribution. Give it a Try it ! ## How to roll a Dice by tossing a Coin ? Cheenta Statistics Department

How can you roll a dice by tossing a coin? Can you use your probability knowledge? Use your conditioning skills. ## ISI MStat PSB 2009 Problem 8 | How big is the Mean?

This is a very simple and regular sample problem from ISI MStat PSB 2009 Problem 8. It It is based on testing the nature of the mean of Exponential distribution. Give it a Try it ! ## ISI MStat PSB 2009 Problem 4 | Polarized to Normal

This is a very beautiful sample problem from ISI MStat PSB 2009 Problem 4. It is based on the idea of Polar Transformations, but need a good deal of observation o realize that. Give it a Try it ! ## ISI MStat PSB 2008 Problem 7 | Finding the Distribution of a Random Variable

This is a very beautiful sample problem from ISI MStat PSB 2008 Problem 7 based on finding the distribution of a random variable. Let’s give it a try !! ## ISI MStat PSB 2008 Problem 2 | Definite integral as the limit of the Riemann sum

This is a very beautiful sample problem from ISI MStat PSB 2008 Problem 2 based on definite integral as the limit of the Riemann sum . Let’s give it a try !! ## ISI MStat PSB 2008 Problem 3 | Functional equation

This is a very beautiful sample problem from ISI MStat PSB 2008 Problem 3 based on Functional equation . Let’s give it a try !!