Understand the problem

True or False: Let A, B, C ∈ M3(\(\mathbb{R}\)) be such that A commutes with B, B commutes with C and B is not a scalar matrix. Then A commutes with C.
Source of the problem
Linear Algebra
Difficulty Level
Suggested Book
Linear Algebra Hoffman and Kunze

Start with hints

Do you really need a hint? Try it first!

First we need to get some idea whether or not this may be true or false  . As a result we need to make some calculations. The first step to approach is always to build the expression of AC – CA & then see whether it is zero or not
Given AB = BA   &  BC = CB . Prove the following ! B(AC) = AC(B) & B(CA) = (CA)B and then subtract to get ( AC – CA )B =  B(AC -CA) Now this is not obvious if DB = BD & B being non- scalar matrix then D = 0 is too strong statement to be true  So this gives us idea  that it maybe false . Now to prove it false we need to construct a counter example
We can take approach using beautiful fact of matrices that they are transformation of spaces . Now given they are transformation of spaces and this is sort of abelian character showing up , we seek help from Groups    
You know why B is restricted to be non scalar because they form the centre of the \(GL_n\)(F) So we approach it in the following way If we can find a group of 3 x 3 matrices with non trivial centre . If we search for centre of groups then the only example available to us is Heisenberg Group In mathematics, the Heisenberg group    , named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form
under the operation of matrix multiplication. Elements a, b and c can be taken from any commutative ring with identity, often taken to be the ring of real numbers(resulting in the “continuous Heisenberg group”) or the ring of integers (resulting in the “discrete Heisenberg group”). The continuous Heisenberg group arises in the description of one-dimensional quantum mechanical systems, especially in the context of the Stone–von Neumann theorem. More generally, one can consider Heisenberg groups associated to n-dimensional systems, and most generally, to any symplectic vector space.

Watch the video

Connected Program at Cheenta

College Mathematics Program

The higher mathematics program caters to advanced college and university students. It is useful for I.S.I. M.Math Entrance, GRE Math Subject Test, TIFR Ph.D. Entrance, I.I.T. JAM. The program is problem driven. We work with candidates who have a deep love for mathematics. This program is also useful for adults continuing who wish to rediscover the world of mathematics.

Similar Problems

Partial Differentiation | IIT JAM 2017 | Problem 5

Try this problem from IIT JAM 2017 exam (Problem 5).It deals with calculating the partial derivative of a multi-variable function.

Rolle’s Theorem | IIT JAM 2017 | Problem 10

Try this problem from IIT JAM 2017 exam (Problem 10).You will need the concept of Rolle’s Theorem to solve it. You can use the sequential hints.

Radius of Convergence of a Power series | IIT JAM 2016

Try this problem from IIT JAM 2017 exam (Problem 48) and know how to determine radius of convergence of a power series.We provide sequential Hints.

Eigen Value of a matrix | IIT JAM 2017 | Problem 58

Try this problem from IIT JAM 2017 exam (Problem 58) and know how to evaluate Eigen value of a Matrix. We provide sequential hints.

Limit of a function | IIT JAM 2017 | Problem 8

Try this problem from IIT JAM 2017 exam (Problem 8). It deals with evaluating Limit of a function. We provide sequential hints.

Gradient, Divergence and Curl | IIT JAM 2014 | Problem 5

Try this problem from IIT JAM 2014 exam. It deals with calculating Gradient of a scalar point function, Divergence and curl of a vector point function point function.. We provide sequential hints.

Differential Equation| IIT JAM 2014 | Problem 4

Try this problem from IIT JAM 2014 exam. It requires knowledge of exact differential equation and partial derivative. We provide sequential hints.

Definite Integral as Limit of a sum | ISI QMS | QMA 2019

Try this problem from ISI QMS 2019 exam. It requires knowledge Real Analysis and integral calculus and is based on Definite Integral as Limit of a sum.

Minimal Polynomial of a Matrix | TIFR GS-2018 (Part B)

Try this beautiful problem from TIFR GS 2018 (Part B) based on Minimal Polynomial of a Matrix. This problem requires knowledge linear algebra.

Definite Integral & Expansion of a Determinant |ISI QMS 2019 |QMB Problem 7(a)

Try this beautiful problem from ISI QMS 2019 exam. This problem requires knowledge of determinant and definite integral. Sequential hints are given here.