Understand the problem

True or False: Let A, B, C ∈ M3(\(\mathbb{R}\)) be such that A commutes with B, B commutes with C and B is not a scalar matrix. Then A commutes with C.
Source of the problem
TATA INSTITUTE OF FUNDAMENTAL RESEARCH GS-2018 (Mathematics)
Topic
Linear Algebra
Difficulty Level
Medium
Suggested Book
Linear Algebra Hoffman and Kunze

Start with hints

Do you really need a hint? Try it first!

First we need to get some idea whether or not this may be true or false  . As a result we need to make some calculations. The first step to approach is always to build the expression of AC – CA & then see whether it is zero or not
Given AB = BA   &  BC = CB . Prove the following ! B(AC) = AC(B) & B(CA) = (CA)B and then subtract to get ( AC – CA )B =  B(AC -CA) Now this is not obvious if DB = BD & B being non- scalar matrix then D = 0 is too strong statement to be true  So this gives us idea  that it maybe false . Now to prove it false we need to construct a counter example
We can take approach using beautiful fact of matrices that they are transformation of spaces . Now given they are transformation of spaces and this is sort of abelian character showing up , we seek help from Groups    
You know why B is restricted to be non scalar because they form the centre of the \(GL_n\)(F) So we approach it in the following way If we can find a group of 3 x 3 matrices with non trivial centre . If we search for centre of groups then the only example available to us is Heisenberg Group In mathematics, the Heisenberg group    , named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form
under the operation of matrix multiplication. Elements a, b and c can be taken from any commutative ring with identity, often taken to be the ring of real numbers(resulting in the “continuous Heisenberg group”) or the ring of integers (resulting in the “discrete Heisenberg group”). The continuous Heisenberg group arises in the description of one-dimensional quantum mechanical systems, especially in the context of the Stone–von Neumann theorem. More generally, one can consider Heisenberg groups associated to n-dimensional systems, and most generally, to any symplectic vector space.

Watch the video

Connected Program at Cheenta

College Mathematics Program

The higher mathematics program caters to advanced college and university students. It is useful for I.S.I. M.Math Entrance, GRE Math Subject Test, TIFR Ph.D. Entrance, I.I.T. JAM. The program is problem driven. We work with candidates who have a deep love for mathematics. This program is also useful for adults continuing who wish to rediscover the world of mathematics.

Similar Problems

Sequences & Subsequences : IIT 2018 Problem 10

This problem appeared in IIT JAM 2018 whch pricisely reqiures concepts of sequences and subsequences from mathematical field real analysis

Cyclic Groups & Subgroups : IIT 2018 Problem 1

This is an application abstract algebra question that appeared in IIT JAM 2018. The concept required is the cyclic groups , subgroups and proper subgroups.

Acute angles between surfaces: IIT JAM 2018 Qn 6

This is an application analysis question that appeared in IIT JAM 2018. The concept required is the multivarible calculus and vector analysis.

Finding Tangent plane: IIT JAM 2018 problem 5

What are we learning?Gradient is one of the key concepts of vector calculus. We will use this problem from IIT JAM 2018 will use these ideasUnderstand the problemThe tangent plane to the surface $latex z= \sqrt{x^2+3y^2}$ at (1,1,2) is given by \(x-3y+z=0\)...

An excursion in Linear Algebra

Did you know Einstein badly needed linear algebra? We will begin from scratch in this open seminar and master useful tools on the way. The open seminar on linear algebra is coming up on 14th November 2019, (8 PM IST).

Linear Algebra total recall (Open Seminar)

Open Seminar on linear algebra. A review of all major ideas. Even if you have little or no knowledge about Linear Algebra, you may join. Register now.

4 questions from Sylow’s theorem: Qn 4

I have prepared some common questions ok application of Sylow’s theorem with higher difficulty level. It is most propably cover all possible combination.

4 questions from Sylow’s theorem: Qn 3

I have prepared some common questions ok application of Sylow’s theorem with higher difficulty level. It is most propably cover all possible combination.

4 questions from Sylow’s theorem: Qn 2

I have prepared some common questions ok application of Sylow’s theorem with higher difficulty level. It is most propably cover all possible combination.

4 questions from Sylow’s theorem: Qn 1

I have prepared some common questions ok application of Sylow’s theorem with higher difficulty level. It is most propably cover all possible combination.