Understand the problem

The three-digit number 999 has a special property: It is divisible by 27, and its digit sum is also divisible by 27. The four-digit number 5778 also has this property, as it is divisible by 27 and its digit sum is also divisible by 27. How many four-digit numbers have this property?
Source of the problem
Israel 2014, Problem 4
Topic
Combinatorics, Number Theory
Difficulty Level
6/10
Suggested Book
Excursion in Mathematics by Bhaskarcharya Prathistan

Start with hints

Do you really need a hint? Try it first!

Let’s write the problem mathematically, i.e. in terms of the equations. Let’s write the condition mathematically. Let $abcd$ be a four-digit number, with $1\le a\le9$ and $0\le b,c,d\le 9$, and $a,b,c,d$ positive integers. Then we need to have $1000a+100b+10c+d=27n$ and $a+b+c+d=27m$, where $n,m$ are positive integers.  Now, we have to count the number of such solutions. Observe that the sum of the digits can be at most 36. So, m = 1. Hence, a+b+c+d = 27. This leads to $111a+11b+c=3(n-1)$ . This implies  $2b+c$ being a multiple of $3$.  Now, this implies we have quite a number of cases to investigate. Let’s do them one by one patiently.
bca+d
03,6,927,24,21,18
Out of this b = 0, c = 9, a+d = 18, a = 9, c =9 is the only possibility considering the maximum possibble value of a+d being 18.  
bca+d
11,4,725,22,19
  None of the cases is fine as the maximum possible value of a+d is 18.
bca+d
22,5,823,20,17
This gives rise to b = 2, c = 8, a+d = 17. Hence two solutions 8289 and 9288.
bca+d
30,3,6,924,21,18,15
Thus you can understand this gives rise to 4 solutions: ($6399,7398,8397$ and $9396$)
bca+d
41,4,722,19,16
This gives rise to three solutions: ($7479,8478,$ and $9477$).
bca+d
52,5,820,17,14
Only the last two choices are acceptable; the former gives us two solutions, and the latter 5 (for a total of seven solutions).  
bca+d
60,3,6,921,18,15,12
 The last three choices are acceptable and give us $1+4+7=12$ solutions.
bca+d
71,4,719,16,13
The last two choices are acceptable and give us $3+6=9$ solutions.
bca+d
82,5,817,14,11
All choices are acceptable and give us $2+5+8=15$ solutions.
bca+d
90,3,6,918,15,15,9
All choices are acceptable and give us $1+4+7+9=21$ solutions. Therefore, there are $1+2+5+3+7+12+9+15+21=75$ four-digit numbers with this property.

Watch video

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Tetrahedron Problem | AIME I, 1992 | Question 6

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1992 based on Tetrahedron Problem.

Triangle and integers | AIME I, 1995 | Question 9

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1995 based on Triangle and integers.

Functional Equation Problem from SMO, 2018 – Question 35

Try this problem from Singapore Mathematics Olympiad, SMO, 2018 based on Functional Equation. You may use sequential hints if required.

Arithmetic sequence | AMC 10A, 2015 | Problem 7

Try this beautiful problem from Algebra: Arithmetic sequence from AMC 10A, 2015, Problem. You may use sequential hints to solve the problem.

Sequence and greatest integer | AIME I, 2000 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2000 based on Sequence and the greatest integer.

Problem based on Cylinder | AMC 10A, 2015 | Question 9

Try this beautiful problem from Mensuration: Problem based on Cylinder from AMC 10A, 2015. You may use sequential hints to solve the problem.

Series and sum | AIME I, 1999 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1999 based on Series and sum.

Inscribed circle and perimeter | AIME I, 1999 | Question 12

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2011 based on Rectangles and sides.

LCM and Integers | AIME I, 1998 | Question 1

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 1998, Problem 1, based on LCM and Integers.

Cubic Equation | AMC-10A, 2010 | Problem 21

Try this beautiful problem from Algebra, based on the Cubic Equation problem from AMC-10A, 2010. You may use sequential hints to solve the problem.