 # Understand the problem

The three-digit number 999 has a special property: It is divisible by 27, and its digit sum is also divisible by 27. The four-digit number 5778 also has this property, as it is divisible by 27 and its digit sum is also divisible by 27. How many four-digit numbers have this property?
##### Source of the problem
Israel 2014, Problem 4
##### Topic
Combinatorics, Number Theory
6/10
##### Suggested Book
Excursion in Mathematics by Bhaskarcharya Prathistan

Do you really need a hint? Try it first!

Let’s write the problem mathematically, i.e. in terms of the equations. Let’s write the condition mathematically. Let $abcd$ be a four-digit number, with $1\le a\le9$ and $0\le b,c,d\le 9$, and $a,b,c,d$ positive integers. Then we need to have $1000a+100b+10c+d=27n$ and $a+b+c+d=27m$, where $n,m$ are positive integers.  Now, we have to count the number of such solutions. Observe that the sum of the digits can be at most 36. So, m = 1. Hence, a+b+c+d = 27. This leads to $111a+11b+c=3(n-1)$ . This implies $2b+c$ being a multiple of $3$.  Now, this implies we have quite a number of cases to investigate. Let’s do them one by one patiently.
 b c a+d 0 3,6,9 27,24,21,18
Out of this b = 0, c = 9, a+d = 18, a = 9, c =9 is the only possibility considering the maximum possibble value of a+d being 18.
 b c a+d 1 1,4,7 25,22,19
None of the cases is fine as the maximum possible value of a+d is 18.
 b c a+d 2 2,5,8 23,20,17
This gives rise to b = 2, c = 8, a+d = 17. Hence two solutions 8289 and 9288.
 b c a+d 3 0,3,6,9 24,21,18,15
Thus you can understand this gives rise to 4 solutions: ( $6399,7398,8397$ and $9396$)
 b c a+d 4 1,4,7 22,19,16
This gives rise to three solutions: ( $7479,8478,$ and $9477$).
 b c a+d 5 2,5,8 20,17,14
Only the last two choices are acceptable; the former gives us two solutions, and the latter 5 (for a total of seven solutions).
 b c a+d 6 0,3,6,9 21,18,15,12
The last three choices are acceptable and give us $1+4+7=12$ solutions.
 b c a+d 7 1,4,7 19,16,13
The last two choices are acceptable and give us $3+6=9$ solutions.
 b c a+d 8 2,5,8 17,14,11
All choices are acceptable and give us $2+5+8=15$ solutions.
 b c a+d 9 0,3,6,9 18,15,15,9
All choices are acceptable and give us $1+4+7+9=21$ solutions. Therefore, there are $1+2+5+3+7+12+9+15+21=75$ four-digit numbers with this property.

# Connected Program at Cheenta

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

# Similar Problems

## Coin Toss Problem | AMC 10A, 2017| Problem No 18

Try this beautiful Problem on Probability from AMC 10A, 2017. Problem-18, You may use sequential hints to solve the problem.

## GCF & Rectangle | AMC 10A, 2016| Problem No 19

Try this beautiful Problem on Geometry on Rectangle from AMC 10A, 2010. Problem-19. You may use sequential hints to solve the problem.

## Fly trapped inside cubical box | AMC 10A, 2010| Problem No 20

Try this beautiful Problem on Geometry on cube from AMC 10A, 2010. Problem-20. You may use sequential hints to solve the problem.

## Measure of angle | AMC 10A, 2019| Problem No 13

Try this beautiful Problem on Geometry from AMC 10A, 2019.Problem-13. You may use sequential hints to solve the problem.

## Sum of Sides of Triangle | PRMO-2018 | Problem No-17

Try this beautiful Problem on Geometry from PRMO -2018.You may use sequential hints to solve the problem.

## Recursion Problem | AMC 10A, 2019| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-15, You may use sequential hints to solve the problem.

## Roots of Polynomial | AMC 10A, 2019| Problem No 24

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-24, You may use sequential hints to solve the problem.

## Set of Fractions | AMC 10A, 2015| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2015. Problem-15. You may use sequential hints to solve the problem.

## Indian Olympiad Qualifier in Mathematics – IOQM

Due to COVID 19 Pandemic, the Maths Olympiad stages in India has changed. Here is the announcement published by HBCSE: Important Announcement [Updated:14-Sept-2020]The national Olympiad programme in mathematics culminating in the International Mathematical Olympiad...

## Positive Integers and Quadrilateral | AMC 10A 2015 | Sum 24

Try this beautiful Problem on Rectangle and triangle from AMC 10A, 2015. Problem-24. You may use sequential hints to solve the problem.