How Cheenta works to ensure student success?

Explore the Back-StoryTry this beautiful Combinatorics Problem based on colour from integer from Prmo-2018.

What is the number of ways in which one can colour the square of a $4 \times 4$ chessboard with colours red and blue such that each row as well as each column has exactly two red squares and blue

squares?

,

- \(28\)
- \(90\)
- \(32\)
- \(16\)
- \(27\)

Chessboard

Combinatorics

Probability

Pre College Mathematics

Prmo-2018, Problem-27

\(90\)

First row can be filled by ${ }^{4} \mathrm{C}_{2}$ ways $=6$ ways.

Case-I

Second row is filled same as first row

$\Rightarrow$

here second row is filled by one way

$3^{\text {rd }}$ row is filled by one way

$4^{\text {th }}$ row is filled by one way

Total ways in Case-I equals to ${ }^{4} \mathrm{C}_{1} \times 1 \times 1 \times 1=6$ ways

now we want to expand the expression and simplify it..............

Case-II $\quad$ Exactly $1$ R & $1$ B is interchanged in second row in comparision to $1^{\text {st }}$ row

$\Rightarrow$

here second row is filled by $2 \times 2$ way

$3^{r d}$ row is filled by two ways

$4^{\text {th }}$ row is filled by one way

$\Rightarrow$

Total ways in Case-II equals to ${ }^{4} \mathrm{C}_{1} \times 2 \times 2 \times 2 \times 1=48$ ways

Case-III $\quad$ Both $\mathrm{R}$ and $\mathrm{B}$ is replaces by other in second row as compared to $1^{\text {st }}$ row

$\Rightarrow$

here second row is filled by 1 way

$3^{r d}$ row is filled by $4 \choose 2 $ ways

$\Rightarrow \quad$ Total ways in $3^{\text {th }}$ Case equals to ${ }^{4} \mathrm{C}_{2} \times 1 \times 6 \times 1=36$ ways

$\Rightarrow \quad$ Total ways of all cases equals to 90 ways

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIALAcademic Programs

Free Resources

Why Cheenta?

Online Live Classroom Programs

Online Self Paced Programs [*New]

Past Papers

More