INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

June 8, 2020

ISI MStat 2015 PSA Problem 17 | Basic Inequality

This is a problem from ISI MStat 2015 PSA Problem 17. First, try the problem yourself, then go through the sequential hints we provide.

Basic Inequality - ISI MStat Year 2015 PSA Question 17


Let \( X=\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+\dots+\frac{1}{3001}\). Then,

  • x<1
  • \( x>\frac{3}{2} \)
  • \( 1<x< \frac{3}{2} \)
  • None of these

Key Concepts


Basic Inequality

Check the Answer


Answer: is \( 1<x< \frac{3}{2} \)

ISI MStat 2015 PSA Problem 17

Precollege Mathematics

Try with Hints


Take it easy. Group things up. Use \(\frac{1}{n+k} < \frac{1}{n}\) for all natural (k)

\( \frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+\dots+\frac{1}{1999} < 1000 \times \frac{1}{1000} \)
\( \frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\dots+\frac{1}{3001} < 1000 \times \frac{1}{2000}\)

\( \Rightarrow x < 1+ \frac{1}{2}= \frac{3}{2} \)

Again see that we can write , x=\( (\frac{1}{1001}+\frac{1}{3001}) + (\frac{1}{1002}+\frac{1}{3000})+ \dots + (\frac{1}{2000}+\frac{1}{2002}) + \frac{1}{2001} \) > \( \frac{2}{2001} +\frac{2}{2001} + \dots + \frac{2}{2001} +\frac{1}{2001} > \frac{2001}{2001}=1 \)

Hence , \( 1<x< \frac{3}{2} \).

ISI MStat 2015 PSA Problem 17
Outstanding Statistics Program with Applications

Outstanding Statistics Program with Applications

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com