Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Bases, Exponents and Role reversals (I.S.I. Entrance 2018)

[et_pb_section fb_built="1" admin_label="Blog Hero" _builder_version="3.22" use_background_color_gradient="on" background_color_gradient_start="rgba(114,114,255,0.24)" background_color_gradient_end="#ffffff" background_blend="multiply" custom_padding="0|0px|0|0px|false|false" animation_style="slide" animation_direction="top" animation_intensity_slide="2%" locked="off"][et_pb_row _builder_version="3.25" background_size="initial" background_position="top_left" background_repeat="repeat" custom_margin="|||" custom_padding="27px|0px|27px|0px" custom_width_px="1280px"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" text_text_color="#474ab6" text_line_height="1.9em" background_size="initial" background_position="top_left" background_repeat="repeat" text_orientation="center" max_width="540px" module_alignment="center" locked="off"]Let \(a, b, c\) are natural numbers such that \(a^{2}+b^{2}=c^{2}\) and \(c-b=1\). Prove that
(i) a is odd.
(ii) b is divisible by 4
(iii) \( a^{b}+b^{a} \) is divisible by c
[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built="1" admin_label="Blog" _builder_version="3.22" custom_margin="|||" custom_padding="0px|0px|21px|0px|false|false"][et_pb_row _builder_version="3.25" background_size="initial" background_position="top_left" background_repeat="repeat" max_width="960px" custom_padding="0|0px|24px|0px|false|false" use_custom_width="on" custom_width_px="960px"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_tabs _builder_version="3.12.2"][et_pb_tab title="Hint 1 - Isolate a" _builder_version="3.12.2"]Notice that \( a^2 =  c^2 - b^2 = (c+b)(c-b) \)

But c - b = 1. Hence \( a^2 = c + b \). But c and b are consecutive numbers (after all their difference is 1!). Sum of two consecutive numbers is always odd (Why?).

Hence \(a^2 \) is odd. This implies a is odd.
[/et_pb_tab][et_pb_tab title="Hint 2 - Eliminate c" _builder_version="3.12.2"]Replace c by 1+b. We have \( a^2 + b^2 = ( 1+ b)^2 = 1 + b^2 + 2b \)

But that means \( a^2 = 1 + 2b \). This implies \( 2b = a^2 - 1 = (a-1)(a+1) \) 

We already showed a is odd. Hence odd + 1, odd -1 are consecutive even numbers. Hence atleast one of them must be divisible by 4 implying their product must be divisible by 8 (as the other is divisible by at least 2).

Hence 2b equals something that is divisible by 8. This implies b is divisible by 4.
[/et_pb_tab][et_pb_tab title="Hint 3 - A bit of Modular Arithmetic" _builder_version="3.12.2"]We already found that \( a^2 = c + b \). We test this modulo c (Modular Arithmetic is a useful tool from Number Theory that you should definitely learn).

\( a^2 \equiv c + b \equiv b \mod c \) . But since b = c - 1, hence \( b \equiv -1 \mod c \). Hence \( a^2 \equiv -1 \mod c \)

Now recall that b is divisible by 8. Hence b/2 is even. This implies \( (a^2)^{\frac{b}{2}} \equiv (-1)^{\frac{b}{2}} = 1 \mod c \). Hence \(a^b \equiv 1 \mod c \)

On the other hand a is odd and b = c-1. Hence \( b^a \equiv (-1)^a  \equiv -1 \mod c \)

Adding we get the final answer \( a^b + b^a \equiv 1 - 1 \equiv 0 \mod c \)
[/et_pb_tab][/et_pb_tabs][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built="1" admin_label="Footer" _builder_version="3.22" background_color="#f7f8fc" custom_padding="0px|0px|2px|0px|false|false" animation_style="zoom" animation_direction="bottom" animation_intensity_zoom="6%" animation_starting_opacity="100%" saved_tabs="all"][et_pb_row use_custom_gutter="on" gutter_width="2" _builder_version="3.25" background_size="initial" background_position="top_left" background_repeat="repeat" custom_padding="24px|0px|145px|0px|false|false" column_structure="1_2,1_4,1_4"][et_pb_column type="1_2" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" text_text_color="#7272ff" header_font="|on|||" header_text_color="#7272ff" header_font_size="36px" header_line_height="1.5em" background_size="initial" background_position="top_left" background_repeat="repeat" custom_margin="||20px|" animation_style="slide" animation_direction="bottom" animation_intensity_slide="10%"]

Get Started with I.S.I. Entrance Program

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_text_color="#8585bd" text_font_size="22px" text_line_height="1.9em" background_size="initial" background_position="top_left" background_repeat="repeat" animation_style="fade" locked="off"]Outstanding mathematics for brilliant school students.
[/et_pb_text][/et_pb_column][et_pb_column type="1_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_button button_url="https://www.cheenta.com/isicmientrance/" url_new_window="on" button_text="Learn More" button_alignment="left" _builder_version="3.16" custom_button="on" button_text_size="16px" button_text_color="#ffffff" button_bg_color="#7272ff" button_border_width="10px" button_border_color="#7272ff" button_border_radius="100px" button_letter_spacing="1px" button_font="|on||on|" button_icon="%%36%%" button_on_hover="off" custom_margin="|||" animation_style="zoom" animation_delay="100ms" animation_intensity_zoom="6%" box_shadow_style="preset1" box_shadow_vertical="10px" box_shadow_blur="50px" box_shadow_spread="5px" box_shadow_color="rgba(114,114,255,0.4)" button_letter_spacing_hover="2px" locked="off" button_text_size__hover_enabled="off" button_one_text_size__hover_enabled="off" button_two_text_size__hover_enabled="off" button_text_color__hover_enabled="off" button_one_text_color__hover_enabled="off" button_two_text_color__hover_enabled="off" button_border_width__hover_enabled="off" button_one_border_width__hover_enabled="off" button_two_border_width__hover_enabled="off" button_border_color__hover_enabled="off" button_one_border_color__hover_enabled="off" button_two_border_color__hover_enabled="off" button_border_radius__hover_enabled="off" button_one_border_radius__hover_enabled="off" button_two_border_radius__hover_enabled="off" button_letter_spacing__hover_enabled="on" button_letter_spacing__hover="2px" button_one_letter_spacing__hover_enabled="off" button_two_letter_spacing__hover_enabled="off" button_bg_color__hover_enabled="off" button_one_bg_color__hover_enabled="off" button_two_bg_color__hover_enabled="off"] 
[/et_pb_button][/et_pb_column][et_pb_column type="1_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_button button_url="https://www.cheenta.com/contact-us/" url_new_window="on" button_text="Apply for admission" button_alignment="left" _builder_version="3.16" custom_button="on" button_text_size="16px" button_text_color="#7272ff" button_bg_color="#ffffff" button_border_width="10px" button_border_color="#ffffff" button_border_radius="100px" button_letter_spacing="1px" button_font="|on||on|" button_icon="%%36%%" button_on_hover="off" custom_margin="|||" animation_style="zoom" animation_intensity_zoom="6%" box_shadow_style="preset1" box_shadow_vertical="10px" box_shadow_blur="50px" box_shadow_spread="5px" box_shadow_color="rgba(181,181,255,0.38)" button_letter_spacing_hover="2px" locked="off" button_text_size__hover_enabled="off" button_one_text_size__hover_enabled="off" button_two_text_size__hover_enabled="off" button_text_color__hover_enabled="off" button_one_text_color__hover_enabled="off" button_two_text_color__hover_enabled="off" button_border_width__hover_enabled="off" button_one_border_width__hover_enabled="off" button_two_border_width__hover_enabled="off" button_border_color__hover_enabled="off" button_one_border_color__hover_enabled="off" button_two_border_color__hover_enabled="off" button_border_radius__hover_enabled="off" button_one_border_radius__hover_enabled="off" button_two_border_radius__hover_enabled="off" button_letter_spacing__hover_enabled="on" button_letter_spacing__hover="2px" button_one_letter_spacing__hover_enabled="off" button_two_letter_spacing__hover_enabled="off" button_bg_color__hover_enabled="off" button_one_bg_color__hover_enabled="off" button_two_bg_color__hover_enabled="off"] 
[/et_pb_button][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25" background_size="initial" background_position="top_left" background_repeat="repeat" custom_padding="0px|0px|100px|0px" column_structure="1_2,1_2"][et_pb_column type="1_2" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_blurb title="I.S.I. & C.M.I Entrance Problems" url="https://www.cheenta.com/i-s-i-entrance-problems/" url_new_window="on" image="https://www.cheenta.com/wp-content/uploads/2018/08/coding-icon_2-1.jpg" icon_placement="left" image_max_width="64px" content_max_width="1100px" _builder_version="3.12.2" header_font="|on|||" header_text_color="#7272ff" header_line_height="1.5em" body_text_color="#8585bd" body_line_height="1.9em" background_color="#ffffff" custom_margin="-80px|||" custom_padding="30px|40px|30px|40px" animation_style="zoom" animation_direction="bottom" animation_intensity_zoom="20%" animation_starting_opacity="100%" box_shadow_style="preset2" box_shadow_horizontal="0px" box_shadow_vertical="0px" box_shadow_blur="60px" box_shadow_color="rgba(71,74,182,0.12)" locked="off"]B.Stat and B.Math Entrance, C.M.I. Entrance problems, discussions and other resources. Go Back
[/et_pb_blurb][/et_pb_column][et_pb_column type="1_2" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_blurb title="Problem Garden" url="#" image="https://www.cheenta.com/wp-content/uploads/2018/08/coding-icon_8-1.jpg" icon_placement="left" image_max_width="64px" content_max_width="1100px" _builder_version="3.12.2" header_font="|on|||" header_text_color="#7272ff" header_line_height="1.5em" body_text_color="#8585bd" body_line_height="1.9em" background_color="#ffffff" custom_margin="-80px|||" custom_margin_tablet="0px|||" custom_margin_phone="" custom_margin_last_edited="on|phone" custom_padding="30px|40px|30px|40px" animation_style="zoom" animation_direction="bottom" animation_delay="100ms" animation_intensity_zoom="20%" animation_starting_opacity="100%" box_shadow_style="preset2" box_shadow_horizontal="0px" box_shadow_vertical="0px" box_shadow_blur="60px" box_shadow_color="rgba(71,74,182,0.12)" locked="off"]Work with great problems from Mathematics Olympiads, Physics, Computer Science, Chemistry Olympiads and I.S.I. C.M.I. Entrance. Click Here
[/et_pb_blurb][/et_pb_column][/et_pb_row][/et_pb_section]

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com