Get inspired by the success stories of our students in IIT JAM 2021. Learn More

For Students who are passionate for Mathematics and want to pursue it for higher studies in India and abroad.

Content

[hide]

This is a very beautiful sample problem from ISI MStat PSB 2013 Problem 10. It's based mainly on counting and following the norms stated in the problem itself. Be careful while thinking !

There are 10 empty boxes numbered 1,2,......,10 placed sequentially on a circle as shown in the figure,

We perform 100 independent trials. At each trial one box is selected with probability \(\frac{1}{10}\) and a ball is placed in each of the two neighboring boxes of the selected one.

Define \(X_k\) be the number of balls in the \(k^{th}\) box at the end of 100 trials.

(a) Find \(E(X_k)\) for \( 1 \le k \le 10\).

(b) Find \(Cov(X_k, X_5)\) for \(1 \le k \le 10 \).

Counting principles

Binomial Distribution

Independence of Events

At first this problem may seem a bit of complex, but when one get to see the pattern it starts unfolding. For his types of problem, I find a useful technique is to follow the picture, in this case the picture is being provided, (if not draw it yourself !!)

Given, \(X_k\) : # balls in the \(k^{th}\) box at the end of 100 trials.

So, the possible values of \(X_k\) are 0,1,2,.....,100. and the probability that at the jth trial a ball will added to the kth box is \(\frac{1}{10}\) , (why??) .

Now, \(P(X_k=x)\)= \({100 \choose x}\)\( (\frac{1}{5})^{x}\) \( (\frac{4}{5})^{100-x} \) \( x=0,1,......,100\)

Clearly, \( X_k \sim binomial( 100, \frac{1}{5})\), from here one can easily find out the the expectation of \(X_k\). But have you thought like this ??

Now, notice that after every slelection of box, 2 balls are added in the system, so at the end of the 10th trial, there will be 200 balls distributed in the system.

So, \(X_1 +X_2 +.......+ X_{100} =200 \), which implies \( \sum_{k} E(X_k)=200\), due to symmetry \(E(X_k)=E(X_l) \forall k \neq l \), So, \(E(X_k)=20\).

(b) Now this part is the cream of this problem, first notice that number of balls in kth box, is dependent on the number of balls in the (k-2)th and (k+2)th box, and vice versa, So, \(Cov( X_k, X_l)=0\) if \(|k-l|\neq 2\).

So, \(Cov(X_k, X_5)= 0 \forall k \neq 3,5 \&\ 7 \), so we just need to find the \(Cov(X_7,X_5)\) and \(Cov(X_3,X_5)\), and \(Cov(X_5,X_5)=Var(X_5)\) .

Now it is sufficient to find the covariance of any of the the above mentioned covariances, as both are symmetric and identical to each other. But for the finding say \(Cov(X_3,X_5)\), lets look whats happening in each trial more closely,

let, \(X_k= i_{k_1} +i_{k_2}+......+i{k_{100}} \) where , \( i_{k_j} = \begin{cases} 1 & if\ a\ ball\ added\ to\ the\ kth\ box\ at\ the\ jth\ trial\ \\ 0 & otherwise \end{cases}\)

So, clearly, \(P(i_{k_j}=1)=\frac{1}{5} \) ; j=1,2,....,100.

So, \(Cov(X_3,X_5)=Cov( i_{3_1}+i_{3_2}+.....+i_{3_{100}},i_{5_1}+i_{5_2}+....+i_{5_{100}})=\sum_{j=1}^{100} Cov(i_{3_j},i_{5_j})\), [\(Cov(i_{3_j},i_{5_j*})=0 \forall j\neq j*\), why ?? ].

So, \(Cov(X_3,X_5)= 100 Cov(i_{3_1},i_{5_1})=100( E(i_{3_1}i_{5_1})-E(i_{3_1})E(i_{5_1}))=100(P(i_{3_1}=1, i_{5_1}=1)-P(i_{3_1}=1)P(i_{5_1}=1))=100(\frac{1}{10}- \frac{1}{5}\frac{1}{5})=6\).

similarly, \(Cov(X_7,X_5)=6\) also, and its easy to find \(Var(X_5)\) , so I leave it as an exercise. So, \(Cov(X_k,X_5)= \begin{cases} 6 & k=3,7 \\ Var(X_5) & k=5 \\ 0 & k\neq 3,5 \or\ 7\end{cases}\). Hence we are done !!

Wait, lets imagine, these boxes are interchanged in such a way that the hth box is replaced with the kth (\(\neq h\)) box, this has been done for all possible pairs of (h,k), Now can you show that all there are precisely \( 10!\sum_{i+2j=10}(i!j!2^j)^{-1}\) number of arrangements possible ?

Now imagine, in a game there are 1 balls each in every box( boxes are arranged identically as shown in the question), you pick up the ball from the first box and put it into the 2nd one, now you can't take out any ball from a box in which you just put a ball, so you pick a ball from the 3rd box and put it into the 4th and you go on like this, taking a ball frim the ith box and put it into the (i+1)th box, but cant empty the box you just filled. Now, again after the first round you remove the empty boxes and do the same thing again and again, till all the balls are not accumulated in a single box. Which box you think will contain all the balls after you run this process finitely many time ?? If you are in this lottery and you are to choose a bix before this game begin, which box you must choose ??

if the coordinator of the game, starts with any ith box how should your strategy change ?? Give it a thought !!

For help, look for ** Josephus Problem**, you may be moved by it's beauty !

What to do to shape your Career in Mathematics after 12th?

From the video below, let's learn from Dr. Ashani Dasgupta (a Ph.D. in Mathematics from the University of Milwaukee-Wisconsin and Founder-Faculty of Cheenta) how you can shape your career in Mathematics and pursue it after 12th in India and Abroad. These are some of the key questions that we are discussing here:

- What are some of the best colleges for Mathematics that you can aim to apply for after high school?
- How can you strategically opt for less known colleges and prepare yourself for the best universities in India or Abroad for your Masters or Ph.D. Programs?
- What are the best universities for MS, MMath, and Ph.D. Programs in India?
- What topics in Mathematics are really needed to crack some great Masters or Ph.D. level entrances?
- How can you pursue a Ph.D. in Mathematics outside India?
- What are the 5 ways Cheenta can help you to pursue Higher Mathematics in India and abroad?

Cheenta has taken an initiative of helping College and High School Passout Students with its "Open Seminars" and "Open for all Math Camps". These events are extremely useful for students who are really passionate for Mathematic and want to pursue their career in it.

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIAL
Google