How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?

# Area of a Triangle -AMC 8, 2018 - Problem 20

Try this beautiful problem from Geometry based on Area of a Triangle Using similarity

## Area of Triangle - AMC-8, 2018 - Problem 20

In $\triangle ABC$ , a point E is on AB with AE = 1 and EB=2.Point D is on AC so that DE $\parallel$ BC and point F is on BC so that EF $\parallel$ AC.

What is the ratio of the area of quad. CDEF to the area of $\triangle ABC$?

• $\frac{2}{3}$
• $\frac{4}{9}$
• $\frac{3}{5}$

### Key Concepts

Geometry

Area

similarity

Answer:$\frac{4}{9}$

AMC-8, 2018 problem 20

Pre College Mathematics

## Try with Hints

$\triangle ADE$ $\sim$ $\triangle ABC$

Can you now finish the problem ..........

$\triangle BEF$ $\sim$ $\triangle ABC$

can you finish the problem........

Since $\triangle ADE$$\sim$ $\triangle ABC$

$\frac{ \text {area of} \triangle ADE}{ \text {area of} \triangle ABC}$=$\frac{AE^2}{AB^2}$

i.e $\frac{\text{area of} \triangle ADE}{\text{area of} \triangle ABC}$ =$\frac{(1)^2}{(3)^2}$=$\frac{1}{9}$

Again $\triangle BEF$ $\sim$ $\triangle ABC$

Therefore $\frac{ \text {area of} \triangle BEF}{ \text {area of} \triangle ABC}$=$\frac{BE^2}{AB^2}$

i.e $\frac{ \text {area of} \triangle BEF}{ \text {area of} \triangle ABC}$ =$\frac{(2)^2}{(3)^2}$=$\frac{4}{9}$

Therefore Area of quad. CDEF =$\frac {4}{9}$ of area $\triangle ABC$

i.e The ratio of the area of quad.CDEF to the area of $\triangle ABC$ is $\frac{4}{9}$