Cheenta

Academy for Gifted Students

Get inspired by the success stories of our students in IIT JAM MS, ISI MStat, CMI MSc DS. Learn More

This is a beautiful problem from ISI MStat 2016 Problem 1, PSB Sample, based on area bounded by the curves. We provide a detailed solution with the prerequisites mentioned explicitly.

In the diagram below, \(L(x)\) is a straight line that intersects the graph of a polynomial \(P(x)\) of degree 2 at the points \(A=(-1,0)\) and \(B=(5,12) .\) The area of the shaded region is 36 square units. Obtain the expression for \(P(x)\).

- Area bounded by the curve
- Polynomials of degree 2
- Area of a triangle

Let \(P(x)=ax^2 +bx + c \) as given \(P(x)\) is of degree 2 .

Now from the figure we can see that \(L(x)\) intersect \(P(x)\) at points \(A=(-1,0)\) and \(B=(5,12) .\)

Hence we have \(P(-1)=0\) and \(P(5)=12\) , which gives ,

\( a-b+c=0 \) ---(1) and \( 25a+5b +c =12 \) ----(2)

Then ,

See from **Fig-1** we can say that Area of the shaded region = (Area bounded by the curve P(x) and x-axis )- (Area of the triangle ABC) - (Area bounded by the curve P(x) , x=5 and x=L )

= \( \int^{L}_{-1} P(x)\,dx - \frac{1}{2} \times (5+1) \times 12 -\int^{5}_{L} P(x)\,dx \)

=\(\int^{L}_{-1} P(x)\,dx - \int^{5}_{L} P(x)\,dx \) -36

=\( \int^{5}_{-1} P(x)\,dx \) -36

Again it is given that area of the shaded region is 36 square units.

So, \( \int^{5}_{-1} P(x)\,dx \) -36 =36 \( \Rightarrow \) \( \int^{5}_{-1} P(x)\,dx \) =\( 2 \times 36 \)

\( \int^{5}_{-1} (ax^2+bx+c) \,dx = 2 \times 36 \) . After integration we get ,

\( 7a + 2b +c =12 \) ---(3)

Now we have three equations and three unknows

\( a-b+c=0 \)

\( 25a+5b +c =12 \)

\( 7a + 2b +c =12 \)

Solving this three equations by elimination and substitution we get ,

\( a=-1 , b=6 , c=7 \)

Therefore , the expression for \(P(x)\) is \( P(x)= -x^2+6x+7 \) .

This is a beautiful problem from ISI MStat 2016 Problem 1, PSB Sample, based on area bounded by the curves. We provide a detailed solution with the prerequisites mentioned explicitly.

In the diagram below, \(L(x)\) is a straight line that intersects the graph of a polynomial \(P(x)\) of degree 2 at the points \(A=(-1,0)\) and \(B=(5,12) .\) The area of the shaded region is 36 square units. Obtain the expression for \(P(x)\).

- Area bounded by the curve
- Polynomials of degree 2
- Area of a triangle

Let \(P(x)=ax^2 +bx + c \) as given \(P(x)\) is of degree 2 .

Now from the figure we can see that \(L(x)\) intersect \(P(x)\) at points \(A=(-1,0)\) and \(B=(5,12) .\)

Hence we have \(P(-1)=0\) and \(P(5)=12\) , which gives ,

\( a-b+c=0 \) ---(1) and \( 25a+5b +c =12 \) ----(2)

Then ,

See from **Fig-1** we can say that Area of the shaded region = (Area bounded by the curve P(x) and x-axis )- (Area of the triangle ABC) - (Area bounded by the curve P(x) , x=5 and x=L )

= \( \int^{L}_{-1} P(x)\,dx - \frac{1}{2} \times (5+1) \times 12 -\int^{5}_{L} P(x)\,dx \)

=\(\int^{L}_{-1} P(x)\,dx - \int^{5}_{L} P(x)\,dx \) -36

=\( \int^{5}_{-1} P(x)\,dx \) -36

Again it is given that area of the shaded region is 36 square units.

So, \( \int^{5}_{-1} P(x)\,dx \) -36 =36 \( \Rightarrow \) \( \int^{5}_{-1} P(x)\,dx \) =\( 2 \times 36 \)

\( \int^{5}_{-1} (ax^2+bx+c) \,dx = 2 \times 36 \) . After integration we get ,

\( 7a + 2b +c =12 \) ---(3)

Now we have three equations and three unknows

\( a-b+c=0 \)

\( 25a+5b +c =12 \)

\( 7a + 2b +c =12 \)

Solving this three equations by elimination and substitution we get ,

\( a=-1 , b=6 , c=7 \)

Therefore , the expression for \(P(x)\) is \( P(x)= -x^2+6x+7 \) .

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIALAcademic Programs

Free Resources

Why Cheenta?

Online Live Classroom Programs

Online Self Paced Programs [*New]

Past Papers

More