Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Angles of Star | AMC 8, 2000 | Problem 24

Try this beautiful problem from Geometry from AMC-8, 2000, Problem-24, based on angles of Star

Angles of Star | AMC-8, 2000 | Problem 24


If \(\angle A = 20^\circ\) and \(\angle AFG =\angle AGF\), then \(\angle B+\angle D =\)

Angles of Star
  • \(90\)
  • \(70\)
  • \(80\)

Key Concepts


Geometry

Star

Triangle

Check the Answer


Answer:\(80\)

AMC-8, 2000 problem 24

Pre College Mathematics

Try with Hints


Find the \(\angle AFG\)

Can you now finish the problem ..........

sum of the angles of a Triangle is \(180^\circ\)

can you finish the problem........

Angles of Star

we know that the sum of the angles of a Triangle is \(180^\circ\)

In the \(\triangle AGF\) we have,\((\angle A +\angle AGF +\angle AFG) =180^\circ \)

\(\Rightarrow 20^\circ +2\angle AFG=180^\circ\)(as \(\angle A =20^\circ\) & \(\angle AFG=\angle AGF\))

\(\Rightarrow \angle AFG=80^\circ\) i.e \(\angle EFD=\angle 80^\circ\)

So the \(\angle BFD=\frac{360^\circ -80^\circ-80^\circ}{2}=100^\circ\)

Now in the \(\triangle BFD\),\((\angle BFD +\angle B +\angle D\))=\(180^\circ\)

\(\Rightarrow \angle B +\angle D=180^\circ -100^\circ\)

\(\Rightarrow \angle B +\angle D=80^\circ\)

Subscribe to Cheenta at Youtube


Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com