Understand the problem

Find all the polynomials $P(x)$ of a degree $\leq n$ with real non-negative coefficients such that $P(x) \cdot P(\frac{1}{x}) \leq [P(1)]^2$ , $ \forall x>0$.
Source of the problem
Albanian BMO TST 2009
Topic
Algebra
Difficulty Level
Easy
Suggested Book
An Excursion in Mathematics

Start with hints

Do you really need a hint? Try it first!

This problem is all about non-negative real numbers. The first thing that should come to your mind is “standard inequalities!”.
Write P(x)=\Sigma a_kx^k. Using the Cauchy-Schwarz inequality, show that P(x)P(1/x)\ge (P(1))^2.
Note that hint 2 along with the hypothesis in the problem implies that P(x)P(1/x)=(P(1))^2. Hence equality holds in hint 2.
As equality holds in CS, it means that for all k satisfying a_k\neq 0, \frac{a_kx^k}{a_kx^{-k}=x^{2k} is a constant. This is absurd, hence there can be at most one such k. Hence, only monomials can satisfy the given inequality.

Watch video

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Sequence and greatest integer | AIME I, 2000 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2000 based on Sequence and the greatest integer.

Arithmetic sequence | AMC 10A, 2015 | Problem 7

Try this beautiful problem from Algebra: Arithmetic sequence from AMC 10A, 2015, Problem. You may use sequential hints to solve the problem.

Series and sum | AIME I, 1999 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1999 based on Series and sum.

Inscribed circle and perimeter | AIME I, 1999 | Question 12

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2011 based on Rectangles and sides.

Problem based on Cylinder | AMC 10A, 2015 | Question 9

Try this beautiful problem from Mensuration: Problem based on Cylinder from AMC 10A, 2015. You may use sequential hints to solve the problem.

Median of numbers | AMC-10A, 2020 | Problem 11

Try this beautiful problem from Geometry based on Median of numbers from AMC 10A, 2020. You may use sequential hints to solve the problem.

LCM and Integers | AIME I, 1998 | Question 1

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 1998, Problem 1, based on LCM and Integers.

Cubic Equation | AMC-10A, 2010 | Problem 21

Try this beautiful problem from Algebra, based on the Cubic Equation problem from AMC-10A, 2010. You may use sequential hints to solve the problem.

Problem on Fraction | AMC 10A, 2015 | Question 15

Try this beautiful Problem on Fraction from Algebra from AMC 10A, 2015. You may use sequential hints to solve the problem.

Pen & Note Books Problem| PRMO-2017 | Question 8

Try this beautiful Pen & Note Books Problem from Algebra from PRMO 2017, Question 8. You may use sequential hints to solve the problem.