Categories

# Algebra, Germany MO 2019, Problem 6

This problem is a beautiful application of algebraic manipulations, ideas of symmetry, and vieta’s formula in polynomials. Try with our sequential hints.

# Understand the problem

Suppose that real numbers $x,y$ and $z$ satisfy the following equations: \begin{align*} x+\frac{y}{z} &=2,\\ y+\frac{z}{x} &=2,\\ z+\frac{x}{y} &=2. \end{align*}
Show that $s=x+y+z$ must be equal to $3$ or $7$. Note: It is not required to show the existence of such numbers $x,y,z$.
##### Source of the problem

Germany MO 2019, Problem 6

##### Topic
Algebra, Simultaneous Equations
6/10
##### Suggested Book
Challenges and Thrills of Pre College Mathematics

Do you really need a hint? Try it first!

Observe that x = y = z = 1 gives a valid solution of the set of equations. In this case s = x+y+z = 3. Now, observe one thing that this set of equations is symmetric in (x,y,z). Observe that we are required to comment on (x+y+z).  Rewriting the equations as: $xz+y = 2z, \qquad (1)$ $xy + z = 2x, \qquad (2)$ $yz + x = 2y \qquad (3)$
and then summing gives us that $x+y+z = xy + yz + zx = s.$ Our aim will be to reduce all the equations into a single variable. ( maybe a polynomial ). Let’s consider the case, where all of x,y,z is not 1.
From now on we consider $x,y,z \neq 1$. This also gives $x \neq y \neq z \neq x$ Solving the first expression $x=\frac{2z-y}{z}$  then plugging this into the second two gives: $y+\frac{z^2}{2z-y}=2 \Rightarrow (2z-y)y+z^2=2(2z-y)$ $z+\frac{2z-y}{yz}=2 \Rightarrow yz^2+2z-y=2yz \Rightarrow y=-\frac{2z}{z^2-2z-1}$
as z is not equal to 1. Plugging the latter into the former and simplifying gives: $\frac{z^2 (z^4-8z^3+14z^2-7)}{(z^2-2z-1)^2}=0 \Rightarrow z^4-8z^3+14z^2-7=0$
Plugging the latter into the former and simplifying gives: $\frac{z^2 (z^4-8z^3+14z^2-7)}{(z^2-2z-1)^2}=0 \Rightarrow z^4-8z^3+14z^2-7=0$
Now, observe that we already know z = 1 is a solution. This gives rise to $0=z^4-8z^3+14z^2-7=(z-1)(z^3-7z^2+7z+7) \Rightarrow z^3-7z^2+7z+7=0$
Observe that the polynomial we have got in terms of z is also satisfied by x,y,z as the equations are symmetric in x,y,z. Hence we can claim that $t^3 – 7t^2 + 7t + 7 = 0$ has three solutions x,y,z.  Hence, $t^3 – 7t^2 + 7t + 7 = (t-x)(t-y)(t-z)$. Therefore, by Vieta’s formula, x+y+z = 7. QED.

# Connected Program at Cheenta

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

# Similar Problems

## Triangle Problem | PRMO-2018 | Problem No-24

Try this beautiful Problem on Trigonometry from PRMO -2018.You may use sequential hints to solve the problem.

## What is Parity in Mathematics ? 🧐

Parity in Mathematics is a term which we use to express if a given integer is even or odd. It is basically depend on the remainder when we divide a number by 2. Parity can be divided into two categories – 1. Even Parity 2. Odd Parity Even Parity : If we...

## Value of Sum | PRMO – 2018 | Question 16

Try this Integer Problem from Number theory from PRMO 2018, Question 16 You may use sequential hints to solve the problem.

## Chessboard Problem | PRMO-2018 | Problem No-26

Try this beautiful Problem on Trigonometry from PRMO -2018.You may use sequential hints to solve the problem.

## Measure of Angle | PRMO-2018 | Problem No-29

Try this beautiful Problem on Trigonometry from PRMO -2018.You may use sequential hints to solve the problem.

## Good numbers Problem | PRMO-2018 | Question 22

Try this good numbers Problem from Number theory from PRMO 2018, Question 22 You may use sequential hints to solve the problem.

## Polynomial Problem | PRMO-2018 | Question 30

Try this Integer Problem from Number theory from PRMO 2018, Question 30 You may use sequential hints to solve the problem.

## Digits Problem | PRMO – 2018 | Question 19

Try this Integer Problem from Number theory from PRMO 2018, Question 19 You may use sequential hints to solve the problem.

## Chocolates Problem | PRMO – 2018 | Problem No. – 28

Try this beautiful Problem on Combinatorics from PRMO -2018.You may use sequential hints to solve the problem.

## Trigonometry | PRMO-2018 | Problem No-14

Try this beautiful Problem on Trigonometry from PRMO -2018.You may use sequential hints to solve the problem. ## By Srijit Mukherjee

I Learn. I Dream. I Enjoy. I Share.

This site uses Akismet to reduce spam. Learn how your comment data is processed.