Understand the problem

Suppose that real numbers $x,y$ and $z$ satisfy the following equations: \begin{align*} x+\frac{y}{z} &=2,\\ y+\frac{z}{x} &=2,\\ z+\frac{x}{y} &=2. \end{align*}
Show that $s=x+y+z$ must be equal to $3$ or $7$. Note: It is not required to show the existence of such numbers $x,y,z$.
Source of the problem

Germany MO 2019, Problem 6

Topic
Algebra, Simultaneous Equations
Difficulty Level
6/10
Suggested Book
Challenges and Thrills of Pre College Mathematics

Start with hints

Do you really need a hint? Try it first!

Observe that x = y = z = 1 gives a valid solution of the set of equations. In this case s = x+y+z = 3. Now, observe one thing that this set of equations is symmetric in (x,y,z). Observe that we are required to comment on (x+y+z).  Rewriting the equations as: $$xz+y = 2z, \qquad (1)$$
$$xy + z = 2x, \qquad (2)$$
$$yz + x = 2y \qquad (3)$$
and then summing gives us that $x+y+z = xy + yz + zx = s.$ Our aim will be to reduce all the equations into a single variable. ( maybe a polynomial ). Let’s consider the case, where all of x,y,z is not 1.
From now on we consider $x,y,z \neq 1$. This also gives $x \neq y \neq z \neq x$ Solving the first expression  $x=\frac{2z-y}{z}$  then plugging this into the second two gives:
$$y+\frac{z^2}{2z-y}=2 \Rightarrow (2z-y)y+z^2=2(2z-y)$$$$z+\frac{2z-y}{yz}=2 \Rightarrow yz^2+2z-y=2yz \Rightarrow y=-\frac{2z}{z^2-2z-1}$$
as z is not equal to 1. Plugging the latter into the former and simplifying gives:
$$\frac{z^2 (z^4-8z^3+14z^2-7)}{(z^2-2z-1)^2}=0 \Rightarrow z^4-8z^3+14z^2-7=0$$
Plugging the latter into the former and simplifying gives:
$$\frac{z^2 (z^4-8z^3+14z^2-7)}{(z^2-2z-1)^2}=0 \Rightarrow z^4-8z^3+14z^2-7=0$$
Now, observe that we already know z = 1 is a solution. This gives rise to  $$0=z^4-8z^3+14z^2-7=(z-1)(z^3-7z^2+7z+7) \Rightarrow z^3-7z^2+7z+7=0$$  
Observe that the polynomial we have got in terms of z is also satisfied by x,y,z as the equations are symmetric in x,y,z. Hence we can claim that \( t^3 – 7t^2 + 7t + 7 = 0 \) has three solutions x,y,z.  Hence, \( t^3 – 7t^2 + 7t + 7 = (t-x)(t-y)(t-z)\). Therefore, by Vieta’s formula, x+y+z = 7. QED.

Watch video

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Sum of Sides of Triangle | PRMO-2018 | Problem No-17

Try this beautiful Problem on Geometry from PRMO -2018.You may use sequential hints to solve the problem.

Recursion Problem | AMC 10A, 2019| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-15, You may use sequential hints to solve the problem.

Roots of Polynomial | AMC 10A, 2019| Problem No 24

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-24, You may use sequential hints to solve the problem.

Set of Fractions | AMC 10A, 2015| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2015. Problem-15. You may use sequential hints to solve the problem.

Indian Olympiad Qualifier in Mathematics – IOQM

Due to COVID 19 Pandemic, the Maths Olympiad stages in India has changed. Here is the announcement published by HBCSE: Important Announcement [Updated:14-Sept-2020]The national Olympiad programme in mathematics culminating in the International Mathematical Olympiad...

Positive Integers and Quadrilateral | AMC 10A 2015 | Sum 24

Try this beautiful Problem on Rectangle and triangle from AMC 10A, 2015. Problem-24. You may use sequential hints to solve the problem.

Rectangular Piece of Paper | AMC 10A, 2014| Problem No 22

Try this beautiful Problem on Rectangle and triangle from AMC 10A, 2014. Problem-23. You may use sequential hints to solve the problem.

Probability in Marbles | AMC 10A, 2010| Problem No 23

Try this beautiful Problem on Probability from AMC 10A, 2010. Problem-23. You may use sequential hints to solve the problem.

Points on a circle | AMC 10A, 2010| Problem No 22

Try this beautiful Problem on Number theory based on Triangle and Circle from AMC 10A, 2010. Problem-22. You may use sequential hints to solve the problem.

Circle and Equilateral Triangle | AMC 10A, 2017| Problem No 22

Try this beautiful Problem on Triangle and Circle from AMC 10A, 2017. Problem-22. You may use sequential hints to solve the problem.