  How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?

# Understand the problem

Suppose that real numbers $x,y$ and $z$ satisfy the following equations: \begin{align*} x+\frac{y}{z} &=2,\\ y+\frac{z}{x} &=2,\\ z+\frac{x}{y} &=2. \end{align*}
Show that $s=x+y+z$ must be equal to $3$ or $7$. Note: It is not required to show the existence of such numbers $x,y,z$.
[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="3.22.4" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px" hover_enabled="0"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="4.0" hover_enabled="0"]

Germany MO 2019, Problem 6 [/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="4.0" hover_enabled="0" open="off"]Algebra, Simultaneous Equations [/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="4.0" hover_enabled="0" open="off"]6/10 [/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.0" hover_enabled="0" open="off"]Challenges and Thrills of Pre College Mathematics [/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="3.22.4" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff" hover_enabled="0"][et_pb_tab title="Hint 0" _builder_version="3.22.4"]Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="4.0" hover_enabled="0"]Observe that x = y = z = 1 gives a valid solution of the set of equations. In this case s = x+y+z = 3. Now, observe one thing that this set of equations is symmetric in (x,y,z). Observe that we are required to comment on (x+y+z).  Rewriting the equations as: $xz+y = 2z, \qquad (1)$ $xy + z = 2x, \qquad (2)$ $yz + x = 2y \qquad (3)$
and then summing gives us that $x+y+z = xy + yz + zx = s.$ Our aim will be to reduce all the equations into a single variable. ( maybe a polynomial ). Let's consider the case, where all of x,y,z is not 1. [/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="4.0" hover_enabled="0"]From now on we consider $x,y,z \neq 1$. This also gives $x \neq y \neq z \neq x$ Solving the first expression $x=\frac{2z-y}{z}$  then plugging this into the second two gives: $y+\frac{z^2}{2z-y}=2 \Rightarrow (2z-y)y+z^2=2(2z-y)$ $z+\frac{2z-y}{yz}=2 \Rightarrow yz^2+2z-y=2yz \Rightarrow y=-\frac{2z}{z^2-2z-1}$
as z is not equal to 1. Plugging the latter into the former and simplifying gives: $\frac{z^2 (z^4-8z^3+14z^2-7)}{(z^2-2z-1)^2}=0 \Rightarrow z^4-8z^3+14z^2-7=0$
[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="4.0" hover_enabled="0"]Plugging the latter into the former and simplifying gives: $\frac{z^2 (z^4-8z^3+14z^2-7)}{(z^2-2z-1)^2}=0 \Rightarrow z^4-8z^3+14z^2-7=0$
Now, observe that we already know z = 1 is a solution. This gives rise to $0=z^4-8z^3+14z^2-7=(z-1)(z^3-7z^2+7z+7) \Rightarrow z^3-7z^2+7z+7=0$   [/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="4.0" hover_enabled="0"]Observe that the polynomial we have got in terms of z is also satisfied by x,y,z as the equations are symmetric in x,y,z. Hence we can claim that $t^3 - 7t^2 + 7t + 7 = 0$ has three solutions x,y,z.  Hence, $t^3 - 7t^2 + 7t + 7 = (t-x)(t-y)(t-z)$. Therefore, by Vieta's formula, x+y+z = 7. QED. [/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

# Watch video

[/et_pb_text][et_pb_code _builder_version="3.26.4"]

# Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="9" _builder_version="3.22.4"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]

# Knowledge Partner  