How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?

# Understand the problem

[/et_pb_text][et_pb_text _builder_version="4.0" text_font="Raleway||||||||" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]Let $a,b,c\ge-1$ be real numbers with $a^3+b^3+c^3=1$.
Prove that $a+b+c+a^2+b^2+c^2\le4$, and determine the cases of equality.[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="3.22.4" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="4.0"]Austria MO 2016. Final Round, Problem 4[/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="4.0" open="off"]Inequality[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="3.22.4" open="off"][/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.0" open="off"]Challenges and Thrills of Pre-College Mathematics[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="3.22.4" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff" hover_enabled="0"][et_pb_tab title="Hint 0" _builder_version="3.22.4"]Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="4.0" hover_enabled="0"]The idea is that you have to capture the symmetry in the equations and correspondingly find it. Observe that the inequality $a+b+c+a^2+b^2+c^2\le4$ with the constraint $a^3+b^3+c^3=1$ can be written as  $(a^3 - a ^2 - a +1) + (b^3 - b ^2 - b +1) + (c^3 - c ^2 - c +1) \ge 0$ using the constraint.    [/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="4.0" hover_enabled="0"]Now, $(a^3 - a ^2 - a +1) + (b^3 - b ^2 - b +1) + (c^3 - c ^2 - c +1) \ge 0$ demands you to look into the polynomial  $P(x)=(x+1)(x-1)^2=x^3-x^2-x+1$. Thus, the problem reduces to show that if $a,b,c\ge-1$ are real numbers, then  $P(a)+P(b)+P(c)\ge0$. [/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="4.0" hover_enabled="0"]What if we can show that individually if  $x\ge-1$ we always have $P(x)\ge0$? Then our problem will be solved right? We have $P(x)=(x+1)(x-1)^2=x^3-x^2-x+1$, observe that it automatically implies that if $x+1 \geq 0$ then we will have $P(x) \geq 0$.   [/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="4.0" hover_enabled="0"]Equality Cases: For equality we must have $P(a)=P(b)=P(c)=0$, and hence $a,b,c\in\{-1,+1\}$.
Hence equality holds if and only if one of the three variables is $-1$ and the other two are $+1$. QED [/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

# Watch video

[/et_pb_text][et_pb_code _builder_version="3.26.4"]

# Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="9" _builder_version="3.22.4"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]