How Cheenta works to ensure student success?
Explore the Back-Story

Acute angles between surfaces: IIT JAM 2018 Qn 6

[et_pb_section fb_built="1" _builder_version="3.22.4"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Warm yourself up with an MCQ

[/et_pb_text][et_pb_code _builder_version="4.0.9"][h5p id="6"][/et_pb_code][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Understand the problem

[/et_pb_text][et_pb_text _builder_version="4.0.9" text_font="Raleway||||||||" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]In \Bbb R^3 the cosine of acute angle between the surfaces x^2+y^2+z^2-9=0 and z-x^2-y^2+3=0 at the point (2,1,2) is 
  1. \frac{8}{5\sqrt{21}}
  2. \frac{10}{5\sqrt{21}}
  3. \frac{8}{3\sqrt{21}}
  4. \frac{10}{3\sqrt{21}}
[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25" custom_padding="|0px||||"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="4.0.9" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px" hover_enabled="0"][et_pb_accordion_item title="Source of the problem" open="off" _builder_version="4.0.9" hover_enabled="0"]IIT JAM 2018 Qn no 6[/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="4.0.9" hover_enabled="0" open="off"]Multivable calculus[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="4.0.9" hover_enabled="0" open="on"]Easy [/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.0.9" hover_enabled="0" open="off"]
Calculus: Multi-Variable Calculus and Linear Algebra with Applications to Differential Equations and Probability – Vol 2 Tom M. Apostol
[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Start with hints

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="4.0.9" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff"][et_pb_tab title="Hint 0" _builder_version="3.22.4"]Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="4.0.9"]If we are asked to give the angle between two lines then it is very easy to calculate but our forehead will get skinned whenever we will be asked to find out the acute angle between two lines and even worse if we are asked to find the angle between two surfaces.   Surprisingly it is not very hard if think stepwise. Observe when you are asked to find out the angle between two lines you calculate it in terms slope. So basically you are firing putting the gun on someone else's shoulder. Here the question is to find that shoulder when it comes in finding the angle between two curves. Observe from the conception of the intersection of two curves that the tangent line of those curves also intersects and we have their corresponding slopes. Bingo! why not calculating the acute angle of the tangent lines and call them the angle between two curves.   Now can you think how to calculate the acute angle between to surfaces?[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="4.0.9"]The acute angle between two surfaces would be the acute angle between their tangent plane. You can stop here and try to do the problem by your own otherwise continue...   The main idea of finding tangent planes revolves around finding gradient of the corresponding surfaces. (For more info see question no 5).   Can you calculate the gradient of the surfaces x^2+y^2+z^2-9 and z-x^2-y^2+3 at (2,1,2)?[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="4.0.9"]The gradient of the surfaces f=x^2+y^2+z^2-9 and g=z-x^2-y^2+3 at (2,1,2) are n_1=f_xi +f_yj+f_zk and n_2=g_xi +g_yj+g_zk at (2,1,2) which is n_1=2xi+2yj+2zk=4i+2j+4k  and n_2=-2xi-2yj+k=-4i-2j+k.   Now given these two gradients, can you find out the angle between them?[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="4.0.9"]n_1=2xi+2yj+2zk=4i+2j+4k  and n_2=-2xi-2yj+k=-4i-2j+k.  

This follows the cosine angles between two gradient is cos \theta=|\frac{n_1.n_2}{|n_1||n_2|}|=|\frac{-16-4+4}{\sqrt{36 \times 21}}|=\frac{8}{3\sqrt{21}}

[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Explanation of hints with graph

[/et_pb_text][et_pb_image src="https://www.cheenta.com/wp-content/uploads/2020/01/IIT-JAM-61-scaled.jpg" _builder_version="4.0.9"][/et_pb_image][et_pb_image src="https://www.cheenta.com/wp-content/uploads/2020/01/IIT-JAM-62-scaled.jpg" _builder_version="4.0.9"][/et_pb_image][et_pb_image src="https://www.cheenta.com/wp-content/uploads/2020/01/IIT-JAM-63-scaled.jpg" _builder_version="4.0.9"][/et_pb_image][et_pb_image src="https://www.cheenta.com/wp-content/uploads/2020/01/IIT-JAM-64-scaled.jpg" _builder_version="4.0.9"][/et_pb_image][et_pb_image src="https://www.cheenta.com/wp-content/uploads/2020/01/IIT-JAM-65-scaled.jpg" _builder_version="4.0.9"][/et_pb_image][et_pb_text _builder_version="4.0.9" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Knowledge Graph

[/et_pb_text][et_pb_image src="https://www.cheenta.com/wp-content/uploads/2020/01/drawit-diagram.png" _builder_version="4.0.9"][/et_pb_image][et_pb_code _builder_version="3.26.4"]https://apis.google.com/js/platform.js
[/et_pb_code][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Connected Program at Cheenta

[/et_pb_text][et_pb_blurb title="College Mathematics Program" url="https://www.cheenta.com/collegeprogram/" image="https://www.cheenta.com/wp-content/uploads/2018/03/College-1.png" _builder_version="3.23.3" header_font="||||||||" header_text_color="#e02b20" header_font_size="48px" link_option_url="https://www.cheenta.com/collegeprogram/" border_color_all="#e02b20"]

The higher mathematics program caters to advanced college and university students. It is useful for I.S.I. M.Math Entrance, GRE Math Subject Test, TIFR Ph.D. Entrance, I.I.T. JAM. The program is problem driven. We work with candidates who have a deep love for mathematics. This program is also useful for adults continuing who wish to rediscover the world of mathematics.[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.com/collegeprogram/" button_text="Learn More" button_alignment="center" _builder_version="3.23.3" custom_button="on" button_bg_color="#0c71c3" button_border_color="#0c71c3" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" background_layout="dark" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3"][/et_pb_button][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="12" _builder_version="4.0.9" hover_enabled="0" image_placement="right" bg_overlay_color="#03aaa5" box_shadow_style_image="preset2" box_shadow_horizontal_image="32px" box_shadow_vertical_image="31px" box_shadow_color_image="#0c71c3"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]
[et_pb_section fb_built="1" _builder_version="3.22.4"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Warm yourself up with an MCQ

[/et_pb_text][et_pb_code _builder_version="4.0.9"][h5p id="6"][/et_pb_code][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Understand the problem

[/et_pb_text][et_pb_text _builder_version="4.0.9" text_font="Raleway||||||||" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]In \Bbb R^3 the cosine of acute angle between the surfaces x^2+y^2+z^2-9=0 and z-x^2-y^2+3=0 at the point (2,1,2) is 
  1. \frac{8}{5\sqrt{21}}
  2. \frac{10}{5\sqrt{21}}
  3. \frac{8}{3\sqrt{21}}
  4. \frac{10}{3\sqrt{21}}
[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25" custom_padding="|0px||||"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="4.0.9" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px" hover_enabled="0"][et_pb_accordion_item title="Source of the problem" open="off" _builder_version="4.0.9" hover_enabled="0"]IIT JAM 2018 Qn no 6[/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="4.0.9" hover_enabled="0" open="off"]Multivable calculus[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="4.0.9" hover_enabled="0" open="on"]Easy [/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.0.9" hover_enabled="0" open="off"]
Calculus: Multi-Variable Calculus and Linear Algebra with Applications to Differential Equations and Probability – Vol 2 Tom M. Apostol
[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Start with hints

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="4.0.9" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff"][et_pb_tab title="Hint 0" _builder_version="3.22.4"]Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="4.0.9"]If we are asked to give the angle between two lines then it is very easy to calculate but our forehead will get skinned whenever we will be asked to find out the acute angle between two lines and even worse if we are asked to find the angle between two surfaces.   Surprisingly it is not very hard if think stepwise. Observe when you are asked to find out the angle between two lines you calculate it in terms slope. So basically you are firing putting the gun on someone else's shoulder. Here the question is to find that shoulder when it comes in finding the angle between two curves. Observe from the conception of the intersection of two curves that the tangent line of those curves also intersects and we have their corresponding slopes. Bingo! why not calculating the acute angle of the tangent lines and call them the angle between two curves.   Now can you think how to calculate the acute angle between to surfaces?[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="4.0.9"]The acute angle between two surfaces would be the acute angle between their tangent plane. You can stop here and try to do the problem by your own otherwise continue...   The main idea of finding tangent planes revolves around finding gradient of the corresponding surfaces. (For more info see question no 5).   Can you calculate the gradient of the surfaces x^2+y^2+z^2-9 and z-x^2-y^2+3 at (2,1,2)?[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="4.0.9"]The gradient of the surfaces f=x^2+y^2+z^2-9 and g=z-x^2-y^2+3 at (2,1,2) are n_1=f_xi +f_yj+f_zk and n_2=g_xi +g_yj+g_zk at (2,1,2) which is n_1=2xi+2yj+2zk=4i+2j+4k  and n_2=-2xi-2yj+k=-4i-2j+k.   Now given these two gradients, can you find out the angle between them?[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="4.0.9"]n_1=2xi+2yj+2zk=4i+2j+4k  and n_2=-2xi-2yj+k=-4i-2j+k.  

This follows the cosine angles between two gradient is cos \theta=|\frac{n_1.n_2}{|n_1||n_2|}|=|\frac{-16-4+4}{\sqrt{36 \times 21}}|=\frac{8}{3\sqrt{21}}

[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Explanation of hints with graph

[/et_pb_text][et_pb_image src="https://www.cheenta.com/wp-content/uploads/2020/01/IIT-JAM-61-scaled.jpg" _builder_version="4.0.9"][/et_pb_image][et_pb_image src="https://www.cheenta.com/wp-content/uploads/2020/01/IIT-JAM-62-scaled.jpg" _builder_version="4.0.9"][/et_pb_image][et_pb_image src="https://www.cheenta.com/wp-content/uploads/2020/01/IIT-JAM-63-scaled.jpg" _builder_version="4.0.9"][/et_pb_image][et_pb_image src="https://www.cheenta.com/wp-content/uploads/2020/01/IIT-JAM-64-scaled.jpg" _builder_version="4.0.9"][/et_pb_image][et_pb_image src="https://www.cheenta.com/wp-content/uploads/2020/01/IIT-JAM-65-scaled.jpg" _builder_version="4.0.9"][/et_pb_image][et_pb_text _builder_version="4.0.9" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Knowledge Graph

[/et_pb_text][et_pb_image src="https://www.cheenta.com/wp-content/uploads/2020/01/drawit-diagram.png" _builder_version="4.0.9"][/et_pb_image][et_pb_code _builder_version="3.26.4"]https://apis.google.com/js/platform.js
[/et_pb_code][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Connected Program at Cheenta

[/et_pb_text][et_pb_blurb title="College Mathematics Program" url="https://www.cheenta.com/collegeprogram/" image="https://www.cheenta.com/wp-content/uploads/2018/03/College-1.png" _builder_version="3.23.3" header_font="||||||||" header_text_color="#e02b20" header_font_size="48px" link_option_url="https://www.cheenta.com/collegeprogram/" border_color_all="#e02b20"]

The higher mathematics program caters to advanced college and university students. It is useful for I.S.I. M.Math Entrance, GRE Math Subject Test, TIFR Ph.D. Entrance, I.I.T. JAM. The program is problem driven. We work with candidates who have a deep love for mathematics. This program is also useful for adults continuing who wish to rediscover the world of mathematics.[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.com/collegeprogram/" button_text="Learn More" button_alignment="center" _builder_version="3.23.3" custom_button="on" button_bg_color="#0c71c3" button_border_color="#0c71c3" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" background_layout="dark" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3"][/et_pb_button][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="12" _builder_version="4.0.9" hover_enabled="0" image_placement="right" bg_overlay_color="#03aaa5" box_shadow_style_image="preset2" box_shadow_horizontal_image="32px" box_shadow_vertical_image="31px" box_shadow_color_image="#0c71c3"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
Menu
Trial
Whatsapp
magic-wandrockethighlight