Understand the problem

Let $A(XYZ)$ be the area of the triangle $XYZ$. A non-regular convex polygon $P_1 P_2 \ldots P_n$ is called guayaco if exists a point $O$ in its interior such that\[A(P_1OP_2) = A(P_2OP_3) = \cdots = A(P_nOP_1).\]Show that, for every integer $n \ge 3$, a guayaco polygon of $n$ sides exists.

Source of the problem

Cono sur olympiad 2017

Topic
Geometry
Difficulty Level
Easy
Suggested Book
Problem Solving Strategies by Arthur Engel.

Start with hints

Do you really need a hint? Try it first!

A regular polygon is obviously guayaco. As regular polygons are not allowed, we should try to “perturb” the polygon a little bit, preserving the areas.
Let us look at transformations of the plane of the form (x,y)\mapsto (ax+by,cx+dy). Show that, if |ad-bc|=1 then this transformation preserves areas.
The class of transformations defined in hint 2 are known as area-preserving transformations. Clearly, taking the image of a regular n-gon under an area-preserving transformation should do the trick. However, there is a caveat. The resulting polygon might become concave. 
To ensure that the resulting polygon remains convex, it suffices to take an area-preserving map close to the identity. Use a=f(n),b=c=0,d=1/f(n) where f(n) is a number dependent on n. The larger the value of n, the smaller |1-f(n)| should be.

Watch video

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Sum of Sides of Triangle | PRMO-2018 | Problem No-17

Try this beautiful Problem on Geometry from PRMO -2018.You may use sequential hints to solve the problem.

Recursion Problem | AMC 10A, 2019| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-15, You may use sequential hints to solve the problem.

Roots of Polynomial | AMC 10A, 2019| Problem No 24

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-24, You may use sequential hints to solve the problem.

Set of Fractions | AMC 10A, 2015| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2015. Problem-15. You may use sequential hints to solve the problem.

Indian Olympiad Qualifier in Mathematics – IOQM

Due to COVID 19 Pandemic, the Maths Olympiad stages in India has changed. Here is the announcement published by HBCSE: Important Announcement [Updated:14-Sept-2020]The national Olympiad programme in mathematics culminating in the International Mathematical Olympiad...

Positive Integers and Quadrilateral | AMC 10A 2015 | Sum 24

Try this beautiful Problem on Rectangle and triangle from AMC 10A, 2015. Problem-24. You may use sequential hints to solve the problem.

Rectangular Piece of Paper | AMC 10A, 2014| Problem No 22

Try this beautiful Problem on Rectangle and triangle from AMC 10A, 2014. Problem-23. You may use sequential hints to solve the problem.

Probability in Marbles | AMC 10A, 2010| Problem No 23

Try this beautiful Problem on Probability from AMC 10A, 2010. Problem-23. You may use sequential hints to solve the problem.

Points on a circle | AMC 10A, 2010| Problem No 22

Try this beautiful Problem on Number theory based on Triangle and Circle from AMC 10A, 2010. Problem-22. You may use sequential hints to solve the problem.

Circle and Equilateral Triangle | AMC 10A, 2017| Problem No 22

Try this beautiful Problem on Triangle and Circle from AMC 10A, 2017. Problem-22. You may use sequential hints to solve the problem.