INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

February 7, 2020

2D Geometry - Areas related to circle AMC 8 2017 Problem 25

[et_pb_section fb_built="1" _builder_version="4.0"][et_pb_row _builder_version="4.2.2" width="100%"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="4.2.2" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="10px|10px|10px|10px|false|false" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

What are we learning ?

[/et_pb_text][et_pb_text _builder_version="4.2.2" text_font="Raleway||||||||" text_font_size="20px" text_letter_spacing="1px" text_line_height="1.5em" background_color="#f4f4f4" custom_margin="10px||20px||false|false" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]

Competency in Focus: 2D Geometry (Areas related to circle)

This problem from American Mathematics Contest 8 (AMC 8, 2017) is based on calculation of areas related to circle. It is Question no. 25 of the AMC 8 2017 Problem series.

[/et_pb_text][et_pb_text _builder_version="4.2.2" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="10px||10px||false|false" custom_padding="10px|10px|10px|10px|false|false" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

First look at the knowledge graph:-

[/et_pb_text][et_pb_image src="https://www.cheenta.com/wp-content/uploads/2020/02/amc8_2017_25.png" alt="calculation of mean and median- AMC 8 2013 Problem" title_text=" mean and median- AMC 8 2013 Problem" align="center" force_fullwidth="on" _builder_version="4.2.2" min_height="429px" height="189px" max_height="198px" custom_padding="10px|10px|10px|10px|false|false"][/et_pb_image][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Next understand the problem

[/et_pb_text][et_pb_text _builder_version="4.2.2" text_font="Raleway||||||||" text_font_size="20px" text_letter_spacing="1px" text_line_height="1.5em" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]In the figure shown, $\overline{US}$ and $\overline{UT}$ are line segments each of length 2, and $m\angle TUS = 60^\circ$. Arcs $TR$ and $SR$ are each one-sixth of a circle with radius 2. What is the area of the region shown? $\textbf{(A) }3\sqrt{3}-\pi\qquad\textbf{(B) }4\sqrt{3}-\frac{4\pi}{3}\qquad\textbf{(C) }2\sqrt{3}\qquad\textbf{(D) }4\sqrt{3}-\frac{2\pi}{3}\qquad\textbf{(E) }4+\frac{4\pi}{3}$[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="4.0"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="4.2.2" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" _builder_version="4.2.2" open="on"]American Mathematical Contest 2017, AMC 8 Problem 25[/et_pb_accordion_item][et_pb_accordion_item title="Key Competency" open="off" _builder_version="4.2.2" inline_fonts="Abhaya Libre"]

Finding the area of a triangle and sector of a circle. (Area related to circles)

[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="4.2.2" open="off"]5/10[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.2.2" open="off"]Pre college mathematics.[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="4.0.9" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|0px|20px||" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Start with hints 

[/et_pb_text][et_pb_tabs _builder_version="4.2.2"][et_pb_tab title="HINT 0" _builder_version="4.0.9"]Do you really need a hint? Try it first![/et_pb_tab][et_pb_tab title="HINT 1" _builder_version="4.2.2"]C0nstruction : Let $X$ and $Y$ are the centres of the scetors $ST$ and $TR$ Now Let us join $SX$ and $TY$ What do you think? Will the points $U,S,\textbf{ and}\quad X$ be in a straightline?[/et_pb_tab][et_pb_tab title="HINT 2" _builder_version="4.2.2"]$U,S,\textbf{ and}\quad X$ will be in a straight line because $\angle STU =60^{\circ}$ And angle of a  circle is $360$  i.e., $\angle SXR = \angle TYR = 60^{\circ}$ [Since sector($SXR$)=$\frac{1}{6}circle$] Then $UXY$ will make an equilateral triangle.[/et_pb_tab][et_pb_tab title="HINT 3" _builder_version="4.2.2"]So after construction the figure will look like this : Therefore, The required area = Area of $\triangle UXY$ - $2 \times$ Area of the sector $SXR$.  [/et_pb_tab][et_pb_tab title="HINT 4" _builder_version="4.2.2"]Area of equilateral triangle $\triangle UXY= 4\sqrt{3}$ And the are of sector $SXR= \frac{2\pi}{3}$ ANS : $4\sqrt{3}-\frac{4\pi}{3}$[/et_pb_tab][et_pb_tab title="Formulas Used " _builder_version="4.2.2"]Area of an equilateral triangle =$\frac{a^2\sqrt{3}}{4}$ [where $a$ is a sied of the triangle] Area of a sector of a circle of angle $\theta$ = $\frac{\theta}{360}\pi r^2$ [where $r$ is the radius of the circle][/et_pb_tab][/et_pb_tabs][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built="1" fullwidth="on" _builder_version="4.2.2" global_module="50833"][et_pb_fullwidth_header title="AMC - AIME Program" button_one_text="Learn More" button_one_url="https://www.cheenta.com/amc-aime-usamo-math-olympiad-program/" header_image_url="https://www.cheenta.com/wp-content/uploads/2018/03/matholympiad.png" _builder_version="4.2.2" title_level="h2" background_color="#00457a" custom_button_one="on" button_one_text_color="#44580e" button_one_bg_color="#ffffff" button_one_border_color="#ffffff" button_one_border_radius="5px"]

AMC - AIME - USAMO Boot Camp for brilliant students. Use our exclusive one-on-one plus group class system to prepare for Math Olympiad

[/et_pb_fullwidth_header][/et_pb_section][et_pb_section fb_built="1" fullwidth="on" _builder_version="4.2.2" global_module="50840" saved_tabs="all"][et_pb_fullwidth_post_slider include_categories="879,878,869" show_arrows="off" show_pagination="off" show_meta="off" image_placement="left" _builder_version="4.2.2" custom_button="on" button_text_color="#0c71c3" button_bg_color="#ffffff" custom_margin="20px||20px||false|false" custom_padding="20px||20px||false|false"][/et_pb_fullwidth_post_slider][/et_pb_section]

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com