OUTSTANDING MATHEMATICS PROGRAMS ONLINE... taught by Olympians and Researchers

For Math Olympiad, I.S.I. & C.M.I. Entrance and advance college learners.
Get Started





Taught by Olympians, Researchers and seasoned mathematicians with decades of training in advanced mathematics.

Three Outstanding Programs

for brilliant students

Math Olympiad Program

Advanced number theory, geometry, combinatorics, and algebra. 

This problem driven, rigorous program is taught by olympians, researchers who are active mathematicians at leading universities around the world.

I.S.I. & C.M.I. Entrance Program

B.Stat and B.Math Entrance Program at Indian Statistical Institute and B.Sc. Math Entrance at Chennai Mathematical Institute require special training in topics like number theory, geometry and combinatorics

This rigorous program for high school students is taught by students and alumni of I.S.I. & C.M.I. 


College Mathematics Program

Entrances of TIFR, I.S.I. M.Math and Subject GRE require advanced training in topology, analysis, abstract and linear algebra. 

This advanced program is designed to take you ‘inside’ the beauty of mathematics.


ISI MStat and IIT JAM Statistics  Program

Entrances of I.S.I. M.Stat, Subject GRE, and IIT JAM Statistics require advanced training in Probability, Regression and ANOVA, Theory of Estimation and Mathematics. More than entrances, this program offers you to fall in love with the exciting principles of data and chance – the core concepts in the field of data science.  

This advanced program is designed to take you ‘inside’ the beauty of math, data and chance.


Cheenta is special …

Group class + One-on-One 

Brilliant mathematics … personalized

Step 1

Group Lectures

Brilliant Faculty members. Problem driven sessions.

Step 2


One mentor – one student. 
Personalization of advanced math.

Step 3

Problem Lists

Inspiring problems every week. Mentors  help students to solve.


"We contacted Cheenta because our son, Sambuddha (a.k.a. Sam), seemed to have something of a gift in mathematical/logical thinking, and his school curriculum math was way too easy and boring for him. We were overjoyed when Mr Ashani Dasgupta administered an admission test and accepted Sam as a one-to-one student at Cheenta. Ever since it has been an excellent experience and we have nothing but praise for Mr Dasgupta. His enthusiasm for mathematics is infectious, and admirable is the amount of energy and thought he puts into each lesson. He covers a wide range of mathematical topics, and every lesson is packed with insights and methods. We are extremely pleased with the difference he has been making. Under his tutelage Sam has secured several gold awards from the UK Mathematics Trust (UKMT) and Scottish Mathematical Council (SMC). Recently Sam received a book award from the UKMT and got invited to masterclass sessions also organised by the UKMT. Mr Dasgupta’s tutoring was crucial for these achievements. We think Cheenta is rendering an excellent service to humanity by identifying young mathematical minds and nurturing them towards becoming inspired mathematicians of the future.

Jayanta Majumdar

Father of Sambuddha Majumdar, Glasgow, Scotland

"Our experience with Cheenta has been excellent. Even though my son started in Middle School, they understood his Math level and took personal interest in developing a long term plan considering his strengths and weakness areas. Through out the semester courses they have nourished him with challenging problems and necessary homework. His guidance has helped my son to perform well at competitions including USAJMO and others. He has grown more confident in his math abilities over the past year and half and is hoping to do well in the future.
I am impressed with their quality and professionalism. We are very thankful to Cheenta and hope to benefit from them in the coming years. I would strongly recommend them to any student who wants to learn Math by doing challenging problems, specially if they are looking for Math than what their school can offer."

Murali Kadaveru

Father of Akshaj Kadaveru, Virginia, USA

In the coming week..

Join us in outstanding adventure in mathematics next week. 

Euler's totient function

Euler’s Totient function gives the reduced residue class for a number. It has beautiful properties including multiplicative (group homomorphism). We explore it in a seminar. 


Geometry of varingon

Varingon quadrilaterals are actually parallelograms. They exhibit deep connection between area and midpoint. We explore it in our Math Olympiad Group.


Fun with group theory

Characteristic subgroups are super invariants of a group in some sense. Commutator subgroup is one example of characteristic subgroup. We explore its properties in a seminar.

Sum of Sides of Triangle | PRMO-2018 | Problem No-17

Try this beautiful Problem on Geometry from PRMO -2018.You may use sequential hints to solve the problem.

Recursion Problem | AMC 10A, 2019| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-15, You may use sequential hints to solve the problem.

Roots of Polynomial | AMC 10A, 2019| Problem No 24

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-24, You may use sequential hints to solve the problem.

Testing of Hypothesis| ISI MStat 2016 PSB Problem 9

This is a problem from the ISI MStat Entrance Examination,2016 making us realize the beautiful connection between exponential and geometric distribution and a smooth application of Central Limit Theorem.

Set of Fractions | AMC 10A, 2015| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2015. Problem-15. You may use sequential hints to solve the problem.

Indian Olympiad Qualifier in Mathematics – IOQM

Due to COVID 19 Pandemic, the Maths Olympiad stages in India has changed. Here is the announcement published by HBCSE: Important Announcement [Updated:14-Sept-2020]The national Olympiad programme in mathematics culminating in the International Mathematical Olympiad...

Positive Integers and Quadrilateral | AMC 10A 2015 | Sum 24

Try this beautiful Problem on Rectangle and triangle from AMC 10A, 2015. Problem-24. You may use sequential hints to solve the problem.

Cheena Statistics Logo

ISI MStat PSB 2006 Problem 8 | Bernoullian Beauty

This is a very simple and regular sample problem from ISI MStat PSB 2009 Problem 8. It It is based on testing the nature of the mean of Exponential distribution. Give it a Try it !

Rectangular Piece of Paper | AMC 10A, 2014| Problem No 22

Try this beautiful Problem on Rectangle and triangle from AMC 10A, 2014. Problem-23. You may use sequential hints to solve the problem.

roll a Dice by tossing a Coin

How to roll a Dice by tossing a Coin ? Cheenta Statistics Department

How can you roll a dice by tossing a coin? Can you use your probability knowledge? Use your conditioning skills.