OUTSTANDING MATHEMATICS FOR BRILLIANT STUDENTS

For Math Olympiad, I.S.I. & C.M.I. Entrance and advance college learners.
Get Started

Pause.... think.

Suppose ABC is any triangle. D be any point on AB.

Can you find a point X on BC such that area of triangle XAD is equal to the area of triangle ACX?

Hint: Area and midpoint are intimately related.

Three Outstanding Programs

for brilliant students

Math Olympiad Program

Advanced number theory, geometry, combinatorics, and algebra.

This problem driven, rigorous program is taught by olympians, researchers who are active mathematicians at leading universities around the world.

I.S.I. & C.M.I. Entrance Program

B.Stat and B.Math Entrance Program at Indian Statistical Institute and B.Sc. Math Entrance at Chennai Mathematical Institute require special training in topics like number theory, geometry and combinatorics

This rigorous program for high school students is taught by students and alumni of I.S.I. & C.M.I.

 

College Mathematics Program

Entrances of TIFR, I.S.I. M.Math and Subject GRE require advanced training in topology, analysis, abstract and linear algebra.

This advanced program is designed to take you ‘inside’ the beauty of mathematics.

 

Cheenta is special …

Group class + One-on-One

Brilliant mathematics … personalized

Step 1

Group Lectures

Brilliant Faculty members. Problem driven sessions.

Step 2

One-on-One

One mentor – one student.
Personalization of advanced math.

Step 3

Problem Lists

Inspiring problems every week. Mentors help students to solve.

 

"We contacted Cheenta because our son, Sambuddha (a.k.a. Sam), seemed to have something of a gift in mathematical/logical thinking, and his school curriculum math was way too easy and boring for him. We were overjoyed when Mr Ashani Dasgupta administered an admission test and accepted Sam as a one-to-one student at Cheenta. Ever since it has been an excellent experience and we have nothing but praise for Mr Dasgupta. His enthusiasm for mathematics is infectious, and admirable is the amount of energy and thought he puts into each lesson. He covers a wide range of mathematical topics, and every lesson is packed with insights and methods. We are extremely pleased with the difference he has been making. Under his tutelage Sam has secured several gold awards from the UK Mathematics Trust (UKMT) and Scottish Mathematical Council (SMC). Recently Sam received a book award from the UKMT and got invited to masterclass sessions also organised by the UKMT. Mr Dasgupta’s tutoring was crucial for these achievements. We think Cheenta is rendering an excellent service to humanity by identifying young mathematical minds and nurturing them towards becoming inspired mathematicians of the future.

Jayanta Majumdar

Father of Sambuddha Majumdar, Glasgow, Scotland

"Our experience with Cheenta has been excellent. Even though my son started in Middle School, they understood his Math level and took personal interest in developing a long term plan considering his strengths and weakness areas. Through out the semester courses they have nourished him with challenging problems and necessary homework. His guidance has helped my son to perform well at competitions including USAJMO and others. He has grown more confident in his math abilities over the past year and half and is hoping to do well in the future.
I am impressed with their quality and professionalism. We are very thankful to Cheenta and hope to benefit from them in the coming years. I would strongly recommend them to any student who wants to learn Math by doing challenging problems, specially if they are looking for Math than what their school can offer."

Murali Kadaveru

Father of Akshaj Kadaveru, Virginia, USA

In the coming week..

Join us in outstanding adventure in mathematics next week.

Euler's totient function

Euler’s Totient function gives the reduced residue class for a number. It has beautiful properties including multiplicative (group homomorphism). We explore it in a seminar.

h

Geometry of varingon

Varingon quadrilaterals are actually parallelograms. They exhibit deep connection between area and midpoint. We explore it in our Math Olympiad Group.

U

Fun with group theory

Characteristic subgroups are super invariants of a group in some sense. Commutator subgroup is one example of characteristic subgroup. We explore its properties in a seminar.

Imagination and reason in Mathematics

Module Starting Date: 22nd November, 2019, Friday, 6:30 PM Go to Joining Section Math-Olympiad Module: Day 0 Problem ListDownload Philosophical Remarks When did we first fall in love with mathematics? For me, it was in class 6. My father exposed me to a problem from...

An excursion in Linear Algebra

Did you know Einstein badly needed linear algebra? We will begin from scratch in this open seminar and master useful tools on the way. The open seminar on linear algebra is coming up on 14th November 2019, (8 PM IST).

RMO 2019 Maharashtra and Goa Problem 2 Geometry

Understand the problemGiven a circle $latex \Gamma$, let $latex P$ be a point in its interior, and let $latex l$ be a line passing through $latex P$. Construct with proof using a ruler and compass, all circles which pass through $latex P$, are tangent to $latex...

RMO 2019 (Maharashtra Goa) Adding GCDs

Can you add GCDs? This problem from RMO 2019 (Maharashtra region) has a beautiful solution. We also give some bonus questions for you to try.

What are some mind-blowing facts about mathematics?

Mathematics is all about visualisation and how to imply them in you day to day life. Maths is something that we all will need at every step of your life

Number Theory, Ireland MO 2018, Problem 9

This problem in number theory is an elegant applications of the ideas of quadratic and cubic residues of a number. Try with our sequential hints.

Number Theory, France IMO TST 2012, Problem 3

This problem is an advanced number theory problem using the ideas of lifting the exponents. Try with our sequential hints.

Linear Algebra total recall (Open Seminar)

Open Seminar on linear algebra. A review of all major ideas. Even if you have little or no knowledge about Linear Algebra, you may join. Register now.

Algebra, Austria MO 2016, Problem 4

This algebra problem is an elegant application of culminating the ideas of polynomials to give a simple proof of an inequality. Try with our sequential hints.

Number Theory, Cyprus IMO TST 2018, Problem 1

This problem is a beautiful and simple application of the ideas of inequality and bounds in number theory. Try with our sequential hints.